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Abstract

One of the common challenges in actuarial mathematics is finding a model for the number of claims  
and claim severity. We focus on one of the suggested models, namely, on the Schröter family of discrete 
probability distributions. Furthermore, we introduce a simple and easy-to-compute parameter estimate  
for this family of distributions, which can be used especially as initial values in optimization algorithms  
that are needed to compute other estimates.
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INTRODUCTION
In actuarial mathematics, there has been a significant active interest in modeling the number of claims 
and claim severities of a collective risk model for life and non-life insurance. A reliable model enables  
predictions that could help insurance companies set competitive prices for insurance portfolios  
and maintain adequate investment for the next operational year. Also, the insurance company could 
decide on the appropriate margins for the cost of each portfolio to account for future uncertainty.
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A “naïve” approach to obtaining accurate aggregate claims is to find an appropriate family of counting  
distributions and to fit them to the number of claims and claim severities separately. However,  
this approach fails more often than not. The distribution of aggregate claims is, in fact, a convolution  
of the distributions of the number of claims and the claim severity.

Therefore, one of the common problems in actuarial mathematics is modeling the aggregate claims 
distribution of a collective risk model, with the claim severity and the number of claims considered  
as discrete random variables. In the literature, distributions such as compound negative binomial  
and compound Poisson have been studied extensively and used to model the aggregate claims distribution 
based on the convolution approach. Also, the theoretical aspects of compound distributions are  
in Johnson et al. (2005). Bening and Korolev (2012) focus on the compound Poisson distributions  
and their applications in actuarial and financial mathematics. Wimmer and Altmann (1999) enumerate 
several examples of these distributions.

From a theoretical perspective, the convolution approach is unambiguous. However, when the number 
of claim events increases, the computation of the aggregate claim distribution using the convolution  
approach becomes difficult. This problem has led researchers to search for alternative methods  
for computing the aggregate claim distribution of collective risk models. In this paper, we focus on one 
of them, namely, the recursive method.

The recursive method (Sundt and Vernic, 2009) assumes that the claim severity distribution is discrete 
and can compute aggregate claims recursively when the number of claims increases. It does not involve 
computing several convolutions of the conditional distribution of the number of claim events and requires 
far less computer time.

Panjer (1981) introduced the famous recursive formula:

                        					�      (1)1, 2,n � �

where a and b are parameters (by definition, henceforth Pn = 0 for n < 0). It addressed the computational 
problems of the convolution approach. However, only a few distributions – binomial, Poisson, and negative 
binomial4 – satisfy the formula. Therefore, several suggestions to generalize (1) appeared in the literature, 
for example, see Schröter (1990), and Sundt (1992).

1 SCHRÖTER DISTRIBUTION FAMILY
Schröter’s (1990) second-order recursive formula is:

         						�       (2)1,2,n � ����

where a, b, and c are parameters. It is obvious that (1) is a special case of (2) for c = 0. In addition  
to the distributions given by the Panjer’s recursion (1), the distribution family defined by (2) contains 
also convolutions of the Poisson distribution and another distribution from the Panjer family. Thus,  
the Schröter family is more flexible and can better capture the behavior of the number of claims  
and their severity. It can also be applied within actuarial reserving approaches, such as e.g. the one 
proposed by Maciak et al. (2021).

Also, Schröter (1990) derived some basic properties of distributions given by (2). These distributions 
have the probability generating function:5

4	 The Panjer’s Formula (1) defines, in fact, the Katz family of discrete probability distributions, see Wimmer and Altmann 
(1999).

5	 Formulas (3)–(6) are true if a ≠ 0. However, they become more complicated if a = 0.
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                                                  ,		�   (3)

the explicit expression for the probability mass function:

         					�      (4)

the mean:

         								�         (5),
1
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and the variance:

         							�        (6)
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Several problems are related to the discrete probability distributions given by (2), which remain open. 
The parametric space of these distributions has not yet been specified. Although, Schröter (1990) presents 
some conditions that the parameters must satisfy. Another area that deserves a detailed investigation  
is parameter estimation.

2 PARAMETER ETIMATION
Due to a relatively complicated formula for the probability mass function (4), classical parameter 
estimation methods have no explicit results.  For example, the maximum likelihood method results  
in a system of equations that has no explicit solutions and must be solved numerically. Luong and Garrido 
(1993) mention potential problems of such numerical solutions.

Therefore, Luong and Garrido (1993) suggested an estimation method specifically for recursively 
defined probability distributions, based on minimizing the quadratic distance (the recursion formula  
is considered a linear regression model). Luong and Doray (2002), and Doray and Haziza (2004) further 
elaborated on this idea. The minimum quadratic distance estimations have, under certain conditions, 
desirable properties (asymptotic normality, consistency, asymptotic efficiency). However, computations 
still require numerical methods and the use of software (they involve, e.g., matrix inversion).

We derive a simple, easy-to-compute estimation of parameters for distributions from the Schröter 
family. In Formulas (5) and (6), we replace the mean and variance with their empirical counterparts  
and the parameters with their estimates. That is, we have:

         							�      
(7)

         							�      
(8)

Next, denote N the sample size, f0, f1, f2, ... the observed frequencies of values 0, 1, 2, …, and k  
the number for which the sum of three neighbouring frequencies fk + fk + 1 + fk + 2 attains its maximum. 
The empirical analogue of (2) for n = k is the equation:
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         								�         (9)1 2 ,
ˆ ˆˆ ˆ ˆ ˆk k k
b cp a p p
k k� �

� �
� � �� �� �
� �

where 1ˆ ˆ, ,k kp p �  and 2ˆ kp �  are empirical probabilities (i.e. ).6

The parameters will be estimated by solving the system of Formulas (7), (8), and (9). From (7) we have:

 .		�   (10)

Using (10), Formula (9) can be rewritten as:

� � 1 2
ˆˆ ˆ ˆ ˆˆ1 1 =  k k kkp a k b p cp� �

� �� � � � �� � � (11)

and from (11) it follows that:

     					�      (12)

Combining (8) and (10) gives:

� �2 1 ,ˆ ˆs a x c� � �      						�       (13)

and solving (12) and (13) yields the estimate:

                                                                    .		�   (14)
                                                                   						�     

� �

� �
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Using (10), (13), and (14) we obtain estimates of the other two parameters:

     					�      (15)� �2 ,ˆ 1 ˆc s a x� � �

� �ˆ ˆ1 ˆ ˆb x a a c� � � �  .					�      (16)

3 NUMERICAL APPLICATIONS
3.1 Simulation study
We performed a simple simulation study to gain insight into the behavior of the estimates derived  
in Section 2.7 We set parameter values as a = 0.6, b = 2.6, and c = –1.1 and generated 100 000 random 
numbers from this distribution. The generated numbers become the random sample from which  
we estimate the parameters. Furthermore, we repeat this procedure 10 000 times (that is, we obtained  
10 000 estimates of each parameter). Table 1 and Figure 1 present the descriptive statistics of the estimated 
parameters.

6	 In principle, any trinity of neighbouring empirical probabilities can be used in Formula (9).
7	 All computations were performed in the statistical software environment R: <www.r-project.org>.
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Mean 0.60033 2.60136 –1.103495

Standard deviation 0.02063 0.08455 0.21174

Minimum 0.52549 2.30470 –1.89726

Maximum 0.67759 2.91813 –0.34615

Table 1  The descriptive statistics of the estimates

Source: Own study

The means from Table 1 indicate that the estimates (at least for parameters a and b) could even be 
unbiased.8 However, their standard deviations (especially for ĉ ) seem not to converge to 0, leaving thus 
their consistency doubtful.

3.2 Car accident injuries
We applied the Schröter recursive relation (2) as a model for car accident injury data.9 We consider  
the accidents that happened in the Olomouc region of the Czech Republic from January 1, 2021,  
to December 31, 2021, and all types of injuries (deadly, serious, and minor). In Table 2, we present  
the number of days with a particular number of injuries (for example, there were 40 days without  
an injury, 64 days with one injury, etc.).

Figure 1  Boxplots of the estimates

Source: Own study

Source: Own study, using surveys from <www.irozhlas.cz/nehody>

8	� The values from Table 1 are quite stable when simulations are rerun under the same conditions, with the means  
and the standard deviations changing at the third decimal place at most.

9	� The data were created from surveys (the webpage of the Czech public radio broadcaster, accessed on 10 October 2022) 
available at: <www.irozhlas.cz/nehody>.

Table 2  �Car accident injuries in the Olomouc region from January 1, 2021, to December 31, 2021 (x – number  
of injuries, f(x) – number of days with x injuries)

x f(x) x f(x) x f(x) x f(x)

0 40 3 55 6 29 9 7

1 64 4 33 7 22 10 5

2 60 5 39 8 8 12 3
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The model achieves a good fit in terms of the Pearson chi-square test (p = 0.1677;  = 0.451,  = 1.127,  
ĉ = 0.254). We note that this p-value was computed using parameter estimates given by Formulas  
(14)–(16), and it can be improved if, for example, we use the minimum chi-square method to estimate 
the parameters (with our estimations serving as initial values in optimization algorithms).

CONCLUSION
The paper presents new parameter estimations for discrete probability distributions from the Schröter 
family. They are very easy to compute, as they are given explicitly and do not involve iteration algorithms, 
numerical optimization etc., which is the case of previously suggested estimations (Luong and Garido, 
1993; Luong and Doray, 2002; Doray and Haziza, 2004). The new Formulas (14)–(16) for parameter 
estimation can thus be used to gain a preliminary insight into data, and especially as initial values  
in numerical procedures which are used in the abovementioned more sophisticated approaches.
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