
ANALYSES

406

Approximate Valuation  
of Life Insurance Portfolio  
with the Cluster Analysis:  
Trade-Off Between Computation  
Time and Precision
Jan Fojtík1  | Prague University of Economics and Business, Prague, Czech Republic
Jiří Procházka2  | Prague University of Economics and Business, Prague, Czech Republic
Pavel Zimmermann3  | Prague University of Economics and Business, Prague, Czech Republic

Abstract

Valuation of the insurance portfolio is one of the essential actuarial tasks. Life insurance valuation is usually 
based on a projection of cash flows for each policy which is demanding computation time. Furthermore, 
modern financial management requires multiple valuations under different scenarios or input parameters.  
A method to reduce computation time while preserving as much accuracy as possible based on cluster analysis 
is presented. The basic idea of the method is to replace the original portfolio by a smaller representative portfolio 
based on clusters with some weights that would ensure the similarity of the valuation results to the original 
portfolio. Valuation is then significantly faster but requires initial time for clustering and the results are only 
approximate – different from the original results. The difference is studied for a different number of clusters 
and the trade-off between the approximation error and calculation time is evaluated.

INTRODUCTION
The proper valuation of the life insurance portfolio is one of the essential actuarial tasks. In general, there 
are several metrics describing the portfolio value such as the liability value, profit or loss or distributive 
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earnings. These metrics will be referred to as the economic metrics. Calculation of these economic 
metrics will be referred to as the portfolio valuation. Proper calculation of these metrics is important 
for reporting or accounting purposes, especially with new legislation of IFRS 17 or Solvency II. Actual 
and accurate valuation of life insurance portfolio has also a great importance in management decision  
or creating future business plans.

Ordinary methods for valuating life insurance products are usually not complicated or mathematically 
sophisticated. The valuation is based on per-policy projection – projecting the expected development  
and economic metrics of each policy (Selimovic, 2010) which is computationally demanding. Furthermore, 
actuaries usually need to valuate the portfolio multiple times under different assumptions of expected 
reality – e.g. valuation on different interest, mortality or lapse rates. For this purpose, the portfolio needs 
to be valuated under a wide range of different scenarios (Giamouridis et al., 2016; or Kaucic and Daris, 
2015). Even with the newest technologies such as optimized actuarial software and powerful hardware, 
the results are derived with significant delay. For example, for a portfolio of a smaller insurance company 
with 300 000 policies, projecting 1 000 scenarios for 50 years (600 months), valuation may, depending 
on the performance of hardware and software, last even a month. The valuation time increases with  
the portfolio size or the number of required scenarios. The results derived with such a delay may  
be outdated or not satisfying actual market assumptions. Therefore, new opportunities of faster valuation 
present an active area of research.

Several researches suggest that data-mining methods can be used to solve this task (see Mohammed  
et al., 2016; or Devale and Kulkarni, 2012). A recent study (Janecek, 2017) presents two solutions for faster 
liability modeling based on mathematical proxy-functions and interpolations among different interest 
rate scenarios. Authors Freedman and Reynold (2008), and Fojtik et al. (2017) suggest cluster analysis 
as a good alternative way to accelerate valuation of life insurance portfolio. Presently, the application  
of cluster analysis has been in life insurance used mainly for the client segmentation purposes (Jandaghi 
et al., 2015), or experience analysis and assumption-setting process (Purushotham, 2016). Another 
approach for faster life insurance portfolio valuation is based on least squares Monte Carlo techniques. 
These techniques are studied in Turnbull (2014), Nteukam et al. (2014), and Krah and Nikolič (2018).

The approach researched in this paper is based on cluster analysis and will be referred to as clustering 
approach. This approach can be described in the following steps:

1. Calculate the economic metrics for each policy of the original portfolio based on a small number  
of initial runs – e.g. the basic (best estimate) scenario and few stress scenarios for the most important 
inputs.

2. Perform cluster analysis on economic metrics and potentially even on the policy parameters  
for a fixed, reasonably chosen number of clusters. Find a suitable representative (one policy)  
for each cluster. The portfolio of representatives will be referred to as the reference portfolio.

3. Calculate the projections of the economic metrics for all further scenarios only for the representatives 
of the clusters.

4. Find suitable weights of the representatives ensuring that the projection of economic metrics  
of the weighted reference portfolio will be as close as possible to the projection of the economic 
metrics of the original portfolio.

The more clusters (and hence representatives) are used, the slower the calculation and more precise 
the approximation. This constitutes a trade-off between computation time and accuracy. Analysis of this 
trade-off is the main contribution of this article.

In the first chapter the most typical method for life-insurance portfolio valuation is introduced 
including detail description of each component and calculation. The second chapter presents the alternative 
approach for faster valuation of life-insurance portfolio based on clustering analysis including basic 
parametrization, advantages and settings. The third chapter presents the main analysis of this paper.  
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In this section the alternative valuation approach is applied on artificial portfolio and its time and accuracy 
performance is discussed. 

1 PROJECTING CASH FLOW PER EACH POLICY
The most common methods for life-insurance portfolio valuation are based on the cash flow 
projection. Typically, these models are a projection of future cash in-flows and out-flows for each policy  
or an aggregate of policies. Modelling all policies one by one will be referred to as per-policy projection. 
A detailed description of per-policy projection can be found in Dickson and Hardy (2013).

1.1 Components of cash flow model
In this section, we present a cash flow model that can be considered as a typical valuation approach  
for life insurance policies. Specific companies of course have specific variations of these models. However, 
it is not essential (nor possible) for this analysis to cover all particular deviations of valuation models. 
The typical components of the cash flow model are:

In-flows:
• Premium.
Out-flows:
• Claims,
• Surrenders,
• Maturities,
• Commissions,
• Expenses.
The cash flow is calculated as the difference between the expected in-flows and the expected out-flows. 

The cash flow CFi,t formula for the ith policy at the time t is:

CFi,t = EPremi,t – EClaimsi,t – ESurri,t – EMati,t – ECommsi,t – EExpensi,t , (1)

where the EPremi,t is the expected value of premium paid at the beginning of the period t. The EClaimsi,t 

is the expected value of coverage paid for loss or policy event that occurs during period t. The ESurri,t  
is the expected value of surrenders paid for early contract cancellation at the end of the period t before 
the end of the policy period. The EMati,t is the expected value of maturities paid at the end of the policy. 
The ECommsi,t is the value of commissions and EExpensi,t is the value of expenses expected to be paid  
at the beginning of the time period t. Cash flows and its components are projected in discrete time 
intervals indexed by t (months or years). The expected values of each component are the nominal values 
adjusted by the probability that the component will be paid.

The probability of death and the probability of surrender (pre-mature end of contract) are involved 
in the model. The notation qx refers to the probability of death for a person in age x. The st denotes  
the probability of surrender in policy period t.

1.1.1 Expected premium
The premium Premi,t is paid at the begin of the period t only if the insured person is alive and the contract 
has not been cancelled before. The expected value of premium for the ith contract and period t is: 

 (2)
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where x is the age of insured person at the beginning of the valuation. The premium is paid at the beginning 
of the projected period therefore, the first payment in time t = 0 is not adjusted by any probability.

1.1.2 Expected claim
The claim Claimi,t is paid only if the accident happened in period t, the insured person was alive before 
the accident occurred and the contract has not been cancelled before the accident. The claim expected 
value for the ith contract in time t is:

 (3)

where x is the age of the insured person at the beginning of the valuation. The claim is assumed  
to be paid at the end of projected period t.

1.1.3 Expected surrender
The surrender value Surri,t is paid only if the contract is cancelled before the end of the policy period  
and the insured person is still alive. The expected surrender value for ith contract in time t is:

 (4)

where x is the age of the insured person at the beginning of the contract. The surrender is assumed  
to be paid at the end of projected period t.

1.1.4 Expected maturity
The maturity value Mati,t is paid only if the contract has not cancelled and the insured person is alive  
at the end of the contract in time T. As the maturity is paid only at the end of the contract the expected 
maturity value before the end of contract is equal to zero. For the ith contract and time equal to end policy 
period T the expected maturity is: 

 (5)

1.1.5 Expected commissions
The commission Commsi,t is paid at the beginning of the period t only if the insured person is alive and 
the contract has not been cancelled before. The expected commission value for the ith contract in time t is:

 (6)

where x is the age of the insured person at the beginning of the contract. The commission is assumed 
to be paid at the beginning of the projected period therefore, the first commissions in time t = 0  
is not adjusted by probabilities.
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1.1.6 Expected expenses
The expenses Expensi,t are paid in period t only if the insured person is alive and the contract has not 
been cancelled before. The expected value of expenses for the ith contract in time t is:

 (7)

where x is the age of the insured person at the beginning of the contract. The expenses are assumed  
to be paid at the beginning of the projected period therefore, the first expenses in time t = 0 are not 
adjusted by probabilities.

1.2 Economic metrics
In this section the calculation of basic economic metrics is presented. 

1.2.1 Present value of liability
The portfolio value is usually calculated as the present value of future cash flows PVCF. The present value 
of future cash flows for ith policy is calculated as discounted sum of cash flows:

PVCFi = ∑t CFi,t vt , (8)

where vt is the flat discount factor at projection time t. For simplicity PVFC will be referred to the value 
of liability. The total value of the liability for the whole portfolio is sum of PVCF for each policy.

1.2.2 Present value of profit and loss
The profit of the ith policy in projection time t is calculated as:

Profiti,t = CFi,t  + ΔReservei,t + InvIncomei,t , (9)

where the ΔReservei,t is the change of reserve (change of fund value between times t – 1 and t)  
and InvIncomei,t is the investment income realized between times t – 1 and t. The present value of profit 
for ith policy is calculated as discounted sum of individual profits as:

PVprofi = ∑t Profiti,t vt, (10)

where vt is the flat discount factor at projection time t. The portfolio present value of profit is calculated 
as sum of present values of profits for all policies.

1.2.3 Present value of premium
The present value of premium for ith policy in time t is calculated as discounted sum of individual expected 
premium payments: 

PVPremi = ∑t Epremi,t vt, (11)

where vt is the flat discount factor at projection time t. The portfolio present value of premium is calculated 
as sum of present values of premium for all policies.
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2 CLUSTER ANALYSIS AND PARAMETER SETTING
As stated above, some acceleration techniques focus on replacing the original portfolio by representatives 
of clusters. The cash flow projection is then performed for these representatives since there is potentially  
a major reduction of computation time. This is however connected with certain inaccuracy. Inaccuracy  
in this context means the difference between the projection results of the original portfolio  
and the weighted projection results of cluster representatives for a given scenario. 

There are two essential decisions within the clustering approach to make. The number of clusters required 
and the set of clustering variables to be used. The number of clusters as well as the number of clustering 
variables increases computational time on one hand but may increase the accuracy on the other hand.  
A reasonably selected set of clustering variables may also increase the accuracy. Therefore, both should 
be optimized at least to some extent. The number of clusters represents the size of the reference portfolio 
which should be manually pre-selected. In the following analysis, the different number of clusters will 
be analysed to present its accuracy and speed trade-off.

2.1 Clustering variables
There are two distinct types of clustering variables available in this task. The first type is the basic 
policy characteristics such as age, gender, premium, sum assured or policy reserve. The second type  
is the economic metrics such as profits, premiums, claims or even cash flows in individual projected 
periods or intervals and its sensitivities to certain stress scenarios. The character of both types of clustering 
variables is very different. The economic metrics describe more the dynamics of the policy rather than 
position as the basic characteristics.

It has been confirmed in Fojtik (2017), that for the purposes of scenario valuation using the economic 
metrics as clustering variables leads to significantly better results than using the policy characteristics. 
Clustering variables assumed in this study are:

• the present values of future cash flows,
• the present value of profit or loss,
• the present value of premium,
• the sum of cash flows in the first five years,
• the sum of profits in the first five years,
• the sum of claims in the first five years,
• the sum of expenses and commissions in the first five years,
• the sum of premium in the first five years.
The selected clustering variables represent the common metrics describing the insurance portfolio 

from economical perspective. When using clustering variables, the problem of the different scale  
of nominal values may arise. To avoid this problem, it is advised to standardize the data before clustering. 
The standardization process consists of subtracting the mean and dividing it by the standard deviation.

2.2 Clustering algorithm
For the purposes of this paper, the non-hierarchical medoid based algorithm CLARA (Clustering LARge 
Application) was applied (Ng and Han, 2002). The CLARA algorithm is suitable for handling large datasets 
such as a life insurance portfolio (Hebak, 2013). In general, clusters are created by grouping similar 
observations. In the case of life insurance portfolio, clusters of policies with similar economic variables 
selected as clustering variables are created. The dissimilarity between the two policies is defined by the 
distance measure. In this paper, the dissimilarities are measured by the Euclidean distance between policies. 
The Euclidean distance is defined as the sum of squared differences between the ith and the jth policy:

 (12)
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where Zm,i and Zm,j are the standardized values of the mth clustering variable of the ith respectively jth policy. 
The setting of R function is as follows: clara (x = Clustering_data, k = K, samples = 200, rngR = TRUE, 
stand = TRUE, correct.d = TRUE, metric = “Euclidean”, pamLike = TRUE). The data object Clustering_
data is insurance portfolio with clustering variables only and K stands for the number of clusters (size  
of reference portfolio). For more information about additional parameters see the documentation  
of the clustering function in the package cluster (Maechler et al., 2021).

2.3 System of weights
A system of weights must be assigned to the reference portfolio in order to replicate the projection  
of the original portfolio. Authors Freedman and Reynold (2008) suggest using the number of policies  
in each cluster as weight. This ensures that the number of reference policies matches the size of the original 
portfolio. Another option of the weighting system is scaling by some financial variable. In this paper, 
we present a weight based on the ratio of the present values of cash flows between the original portfolio 
and the reference portfolio. The weights are calculated for each cluster individually on the basic (best 
estimate) scenario. The weight of the kth cluster is given by:

 (13)

where the PVCFk
Orig represents the total present value of cash flows of policies from the original portfolio 

belonging to the kth cluster and the PVCFk is the present value of cash flows of the kth representative. This 
ensures that the reference portfolio will, in the basic scenario, replicate the present value of cash flow  
of the original portfolio exactly.

The approximate total value of the mth projected variable  is for each scenario calculated as a weighted 
sum of the mth projected variable Xm,k of the representatives from the reference portfolio:

 . (14)

The symbol K stands for the number of clusters given by the size of the reference portfolio which  
is set manually before the clustering. Note that the weights are built on the best estimate scenario but can 
be used for projecting other stress scenarios.

2.4 Error measure
As we are trying to replicate the results of the per-policy projection of the original portfolio, the error  
in this context is the relative difference between the approximate value calculated by Formula (14) 
of the mth projected variable and the corresponding variable of the original portfolio.  

The error measure of the mth variable is given by the following:

 (15)

where the  is obtained by Formula (14) and Xm is the total value of the mth projected variable of the 
original portfolio. The total error of the reference portfolio is then defined as the average square root sum  
of squares over all selected variables as:
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 (16)

It is advisable to measure the error only for the important variables in terms of actuarial modelling. 
In this paper, the error is measured on the clustering variable from section Clustering  variables.

2.5 Computation time
The main goal of the clustering approach is to reduce the number of projected policies in order to speed 
up life insurance portfolio valuation with an acceptable level of inaccuracy. The total computation time 
consists of two components – clustering time and valuation time. The valuation time is required for 
projecting the policies and the clustering time is required for reducing the size of the original portfolio 
and building the reference portfolio.

Let’s assume that the one scenario valuation of one policy by classical per-policy cash flow model 
takes in average time Tavg. The valuation time of Nscenarios on the whole original portfolio of size Npolicies 

then lasts approximately:

Tavg Npolicies Nscenarios .  (17)

In the case of the original portfolio, the total computation time is equal to the valuation time because 
no clustering is performed. But in the case of the reference portfolio, the total computation time is given 
by the sum of clustering and valuation time of the reference portfolio of size Nreference as:

Tclustering + Tavg Nreference Nscenarios .  (18)

where the first component Tclustering is the time required for clustering. For simplicity, let’s assume that 
the average valuation time of one policy will remain approximately the same after the reduction.  
The acceleration by clustering approach is then:

 (19)

The section Analysis confirms that the size of the reference portfolio (number of clusters) increases 
both – the clustering time as well as the valuation time. The significant time saving is evident especially 
when testing more scenarios.

3 ANALYSIS
The goal of this analysis is to present an approach how to select the suitable number of clusters  
for the specific portfolio and the number of scenarios that preserves the high accuracy and significantly 
speeds up the portfolio valuation.

There are three essential aspects that need to be considered before selecting the number of clusters, namely:
• accuracy of the clustering approach,
• clustering time,
• total acceleration.
In this part, we present the relation between accuracy and clustering time with respect to the different 

number of clusters and the total acceleration for the different number of scenarios.
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3.1 Experimental artificial portfolio
The analysis of the clustering approach is performed on an artificial life insurance portfolio that consists  
of universal-life insurance policies. The portfolio includes 100 000 policies. The 8 different policy products 
are ensuring a reasonable level of heterogeneity that may be observed in real portfolios. Each product has  
12 500 policies. The products differ in the premium frequency, length of policy period or the system  
of benefit payments. The basic parameters of the portfolio are presented in Table 1. The artificial portfolio 
includes the basic policy characteristics and the metrics of economic profit based on best estimate 
assumptions.

In the first step of making the artificial portfolio, the basic policy characteristics were generated  
for each product individually.

The policy characteristics were generated as follows:
• The age of the client at the start of the valuation is generated from Poisson distribution with  

the specific mean for each product presented in Table 1.
• The policy period was calculated as follows:

1. Firstly, the maximal length of the policy period h is calculated from the age of the client obtained 
from the previous step to a maximum possible age considered. The maximal possible age  
is presented in Table 1.

Table 1 Basic overview of the artificial portfolio

Product A B C D

Average age           25 25 25 25

Average policy period 30 30 5 5

Max age               80 80 50 50

Term coefficient      1 1 0.25 0.25

Min policy period     10 10 5 5

Policy duration       10 10 1 1

Sum assured           500 000 500 000 500 000 500 000

Premium frequency     Regular Single Regular Single

Benefit type          SA SA SA SA

Product               E F G D

Average age           30 30 30 30

Average policy period 30 30 5 5

Max age               80 80 50 50

Term coefficient      1 1 0,25 0,25

Min policy period     10 10 5 5

Policy duration       10 10 1 1

Sum assured           1 000 000 1 000 000 1 000 000 1 000 000

Premium frequency     Regular Single Regular Single

Benefit type          SA+CV SA+CV SA+CV SA+CV

Source: Own construction
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2. Secondly, the maximal period h is multiplied by a random variable generated from uniform 
distribution with minimum set to 0.1 and maximum to the term coefficient presented in Table 1.

3. In the last step, the minimal length of the policy period for each product is ensured by parameter 
Min policy period from Table 1.

• The policy duration is given by the policy period obtained from the previous step multiplied  
by a specific coefficient l generated from uniform distribution with minimum set to 0 and maximum 
1. The l coefficient ensures that the policy duration is lower than the policy period for each contract.

• Sum assured was generated from normal distribution with the same mean and standard deviation 
parameter (Sum assured). This parameter can be seen in Table 1. To eliminate negative or very low 
values, the lower bound of the sum assured was set as 10 000.

• The premium was calculated by the deterministic pricing formulas for premium (see Cipra, 2014), 
for two specific types of benefit payments:

 – SA: the benefit of sum assured is paid only in case of death. The premium is calculated  
as for the term insurance products.
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Figure 1  Examples of Cash-Flow projection in artificial portfolio
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Figure 1  (continuation)

Source: Own construction

 – SA + CV: the benefit is paid in two cases – death and maturity (surviving to the end  
of the policy period). The premium is calculated as for the endowment insurance product where 
the death benefit is a sum assured and the survival benefit is the value of the fund at the end  
of the policy period.

• The fund value was calculated as a difference between premium paid over the policy duration with 
interest minus the expenses paid over the policy duration.

After generating the policy characteristics, the economic metrics are calculated by per-policy projection 
described in the section Components of cash flow model.

The examples of cash flows can be seen in Figure 1 on three selected products.

3.2 Number of clusters and the accuracy
Figure 2 presents the accuracy of the approximation for a different number of clusters used. The analysis 
is provided on the original portfolio designed in section Artificial portfolio. As stated previously, accuracy 
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increases (error decreases) with the number of clusters. At first, the error decreases very fast. Somewhere 
around 250 clusters, the decrease of the error slows down significantly and continues steadily.

3.3 Number of clusters and the clustering time
Figure 3 presents the clustering time for the different number of clusters. The clustering time increases 
with the number of clusters. The increase is not linear but significantly faster. Therefore, the results  
for a high number of clusters (more than 10 000) may not be achieved in real time.

Figure 2  Relation between the accuracy and the number of clusters

Figure 3  Relation between the clustering time and the number of clusters

Source: Own construction

Source: Own construction

50 100 250 500 750

Number of clusters

1 000 1 250 1 500

0.2

0.1

0.3

0.4

0.5

0.42 %

0.37 %

0.18 %
0.16 % 0.16 %

0.15 %
0.13 %

0.12 %

Er
ro

r i
n 

%

5000 1 000 1 500

Number of Clusters

10

0

20

30

Cl
us

te
rin

g 
tim

e 
in

 h
ou

rs

2s 6s 1.3m 13.8m
1.5h

4.6h

11h

21.9h



ANALYSES

418

3.4 Accuracy and clustering time trade-off
Figure 4 puts the previous analysis together and presents the relation between the clustering time  
and accuracy achieved for the different number of clusters. The label of the line represents the number  
of clusters. The trade-off between the accuracy and clustering time, in this case, suggests that the reasonable 
number of clusters is somewhere between 250 and 500 where the additional increase in clustering time 
is not compensated by the significant increase in the corresponding accuracy.

Figure 4  Trade-off between the accuracy and clustering time

Source: Own construction
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3.5 Acceleration of clustering approach
Table 2 present the acceleration calculated by formula 19 for the different number of clusters and one 
scenario. Acceleration naturally decreases towards 0 with the increasing number of clusters. For example, 
using the reference portfolio of 500 policies defined by the clustering approach seems to be beneficial 
because the whole calculation is 21 times faster already for one scenario. But using the reference portfolio 
of 1 500 policies is 4 times slower for one scenario as the valuation time and especially the clustering 
increase materially.

Table 3 presents the acceleration of the clustering approach for the different number of scenarios  
and the different number of clusters. The acceleration may differ for the different number of scenarios 

Table 2 Reference portfolio acceleration for one scenario

Number of clusters 50 100 250 500 750 1 000 1 250 1 500

Valuation time     0.17 0.33 0.83 1.67 2.5 3.33 4.17 5

Clustering time    0.03 0.1 1.29 13.83 90.24 274 662 1 314

Calculation time   0.2 0.44 2.12 15.5 92.74 277 667 1 319

Acceleration       1 709 762 156 21 3.59 1.2 0.5 0.25

Source: Own construction
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Figure 5  Comparision of acceleration for two clustering settings

Source: Own construction
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Table 3 Reference portfolio acceleration for one scenario

Number of clusters 
Number of scenarios

1 10 50 100 1000

50 1 709.04 1 966.52 1 993.21 1 996.6 1 999.66

100 762.77 969.84 993.82 996.9 999.69

250 156.96 346.37 387.99 393.9 399.38

500 21.51 109.29 171.53 184.67 198.35

750 3.59 28.92 77.43 97.97 128.69

1 000 1.20 10.83 37.78 54.84 92.39

1 250 0.50 4.73 19.13 30.87 69.02

1 500 0.25 2.44 10.65 18.37 52.79

Source: Own construction

but usually raises with the number of scenarios. For the high number of scenarios, clustering time  
is negligible, and the acceleration is proportional to the number of clusters.

The results from Table 3 suggest that using 1 500 clusters for modelling only one scenario does not 
save any time but modelling 10 scenarios would be 2.44 times faster. The boundary N+

Scenario defines the 
minimal number of scenarios, where acceleration is higher than 1 (the clustering approach is beneficial). 
This boundary has the following:

 (20)
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For 1 500 clusters the clustering approach seems to be faster for at least 5 scenarios.
In section Accuracy and clustering time trade-off, it has been mentioned that a reasonable number  

of clusters based on error criteria should be between 250 or 500 clusters. Using the 250 clusters  
to replicate the original portfolio on a high number of scenarios (100 and more) is almost 400 times faster 
than modelling the original portfolio. Using the 500 clusters on the same number of scenarios is almost  
200 times faster. This means that using the reference portfolio of 250 respectively 500 policies the analysts 
may test 400 respectively 200 times more scenarios in the same amount of time with a very high level 
of accuracy.

Figure 5 compares the acceleration between 250 and 500 clusters. The acceleration for 250 clusters 
dramatically increases when modelling a low number of scenarios and the growth slowly stabilizes after 
20 scenarios. Using 500 clusters the acceleration grows slowly and doesa not stabilize so fast as using  
a lower number of clusters.

This task may be posted as an optimization task, where we search for maximum accuracy given  
the computation time available or minimum computation time for a given acceptable accuracy.

CONCLUSION
The proper valuation of the life insurance portfolio is one of the essential actuarial tasks. Traditionally 
used valuation techniques are based on modelling all policies of the portfolio which is time demanding.  
This takes effect, especially when valuating a high number of scenarios. Reducing the portfolio size in terms 
of the number of policies seems to be a good approach to speed up the computation time of the valuation.

Cluster analysis is one of the tools that can be applied to accelerate multiple scenario valuation of life 
insurance portfolio by reducing the size of the original portfolio into smaller reference portfolio. Results 
are on one hand obtained much faster as the per-policy projection is performed only for the reference 
portfolio. On the other hand, certain inaccuracy occurs as there is a difference between the projection 
results of the reference and the original portfolio.

The proper application of clustering approach requires the setting of several parameters such  
as selection of clustering variables and the suitable size of the reference portfolio determined by the number 
of clusters. The selection of clustering variables may increase the precision of the clustering approach. 
It can be advised to select clustering variables as the variables that the model should reproduce with  
the highest accuracy. The higher number of clusters may increase accuracy but also increase the computation 
time. When comparing the computation time, one has to include also the clustering time. The accuracy 
of the approximation is driven by the number of clusters used. An increasing number of clusters,  
on the other hand, increases both the clustering time as well as the valuation time of the reference portfolio. 
From our experiment, we may conclude:

1. The general level of error is relatively low.
2. An error of the approximation decreases with the increasing number of clusters at first relatively 

fast. At some point, the decrease slows down and continues steadily further at a slower rate.
3. For the high number of scenarios, the clustering time tends to be negligible, and the acceleration 

is proportional to the ratio of the size of the reference portfolio to the size of the original portfolio.
4. This means that the reasonable number of clusters is for our experiment somewhere between 250 

and 500 as for the higher number of clusters, error rate decreases only slowly while as computation 
time increases rather fast and for the lower number of clusters the situation is opposite.
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