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Abstract

Different reserving methods can be used to predict claim values in non-life insurance. This article compares 
two different methodological approaches to reserving methods, namely, Chain-ladder (the traditional approach  
to reserving in non-life insurance) and state-space modeling (the modern approach based on recursive Kalman 
filtering). Moreover, the paper compares both methods with the involvement of clustering which divides claims 
into several groups according to their similarity and ensures greater homogeneity of data. To be able to compare 
the accuracy of reserve predictions numerically one suggests three types of generators of large insurance 
portfolios that represent well the behavior of the given methods in practice (one of them is derived directly 
from a real Czech non-life insurance claims portfolio). The obtained results may serve as a hint to improve 
the state-space methodology in order to give comparable results with classical approaches to reserving since 
in future the state-space modeling will be important for micro reserving where the “clustering” gains nearly  
a form of individual policy contracts.
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INTRODUCTION
Loss reserving is crucial for each insurance company since it is used to estimate funds for future claim 
payments and obtained results serve to ensure the financial stability of the insurer. In this paper, we deal 
with the estimation of reserves in non-life insurance. The article aims to provide a description of loss 
reserving and focuses on the comparison of two reserving methods and their application to insurance 
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claims portfolios. The Chain-ladder method, usually considered as a benchmark method in loss reserving 
and known for its effectiveness across diverse insurance scenarios, is compared to the log-normal model, 
which is a representative of state-space modeling and modern reserving methods. These reserving methods 
are supplemented by clustering method CLARA, introduced in Kaufman and Rousseeuw (1990), to assess 
the benefit of clustering for reserve accuracy (according to our experience, the method CLARA seems 
to be the most suitable in the context of reserving).

In order to dispose of a sufficient number of portfolios to which we could apply the considered methods 
and consequently compare particular approaches, we propose three different types of non-life insurance 
claims portfolio generators. For each generator and an adequately large sample of generated portfolios, the 
accuracy of the claims and reserve estimates is compared using different techniques, namely, comparing 
boxplots and further verifying the improvement of prediction accuracy using the paired sign test for 
equality of medians of reserves deviations. The section concerning the construction of insurance portfolio 
generators can be also useful for actuarial practice generally (not only for reserving). 

This paper is structured as follows. Section 1 serves as a brief literature review. Section 2 provides  
an overview of the importance of loss reserving in non-life insurance, discusses two different approaches 
to reserving, explains the concept of clustering in the context of loss reserving and surveys the references 
in literature. Section 3 provides an overview of two distinct regulatory frameworks used in the insurance 
industry, Solvency II and IFRS 17, and introduces the concept of Claims Development Results (CDR).  
In Section 4, we present the generators used to create the insurance claims portfolios used for the numerical 
study. Section 5 presents the results of the numerical study and discusses the accuracy of estimates. Finally, 
the last section summarizes the conclusions achieved in this paper and suggests further research possibility.

1 LITERATURE REVIEW
As mentioned above, actuarial science is a field that has undergone significant evolution. This also includes 
reserving as its important part. Thus, there are many publications dealing with this field. The development 
of the reserving methods has progressed from basic deterministic approaches to sophisticated statistical 
and machine-learning techniques.

As examples of the deterministic methods that are based on the extrapolation of historical data, we can 
mention the Chain-Ladder method, see, e.g., Wüthrich and Merz (2008) including its stochastic model 
by Mack (1993), and Bornhuetter-Ferguson method presented in Bornhuetter and Ferguson (1972).

Due to the gradually increasing computational power and increased data availability, researchers could 
use more complex statistical methods. One of the representatives from this group is the generalized linear 
model that allowed to robustly model the relationship between claims data and influencing factors, see, 
e.g., England and Verrall (2002).

A different approach, based on state-space modeling, enables dynamic modeling of claims processes  
by incorporating both observed data and latent variables. Verall (1989) was a pioneering article introducing 
state-space models for claims reserving, presenting their ability to capture the complexity of claims 
development over time. Later articles, such as De Jong (2005) or Atherino et al. (2010), and recent 
advancements by, e.g., Costa and Pizzinga (2020) or Hendrych and Cipra (2021) further enhance  
the flexibility and predictive power of this approach.

The advent of machine learning has further transformed reserving methodologies. Techniques such 
as random forests and neural networks, presented, for example, in Wüthrich (2018), provide non-linear 
modeling capabilities. Recent studies by, e.g., Duval and Pigeon (2019), De Felice and Moriconi (2019) 
or Delong et al. (2020) can be used as an additional source of knowledge in the area of reserving.

Since there is an enormous volume of literature including internet reports dealing with reserving,  
in addition to the publications we have presented so far, we only list several other references dealing with 
this topic from various points of view: Balona and Richman (2020), Cipra (2010), England et al. (2018),  
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Kaas et al. (2004), Munroe et al. (2018), Wüthrich and Merz (2008), The Actuarial Community (2022), 
Zhang (2010). Some of them will be referred later in the text to explain specific problems of reserving.

2 LOSS RESERVES IN NON-LIFE INSURANCE
Loss reserving is an important aspect of non-life insurance, which serves as a financial tool to estimate 
funds for future claim payments. Insurance companies may consider various methods to predict the 
ultimate value of claims that have been reported, but still not settled, and those that have not yet been 
reported. The main purpose of reserving is to ensure that insurance companies have appropriate funds 
to cover claim settlements, which is connected to the maintenance of financial stability and fulfilment 
of insurers’ obligations to policyholders. One must steadily monitor and adjust the loss reserves because 
of the development of insurance portfolios caused by the reporting new information.

In practice, one can encounter different reserving methods, but these methods can be divided into 
two main groups of the so-called micro and macro reserving. The difference between these two types  
of reserving lies in the form of data, one is working with. The micro approach involves a detailed 
investigation of individual claims, with detailed information about each claim. On the other hand,  
the macro approach takes a broader perspective and individual claims are considered in an aggregated 
form. Nevertheless, both approaches are complementary and can be mutually combined. 

In the case of macro reserving, one of the most used data representations is a run-off triangle, also called 
a development triangle. This triangle is a tabular representation of historical claims data over multiple 
periods. Typically, the claims are organized by accident years, which are represented by rows (i = 0, ..., I),  
and delays in reporting or payments captured in columns (j = 0, ..., J). Finally, the diagonals of the 
triangle represent particular calendar years. Based on the values appearing in the triangle, we can divide 
these triangles into incremental and cumulative ones. An illustration of a run-off triangle can be found 
in Figure 1. The actuaries can use diverse statistical techniques and mathematical models to analyze the 
patterns within the run-off triangle in order to complete the triangle into the rectangle by estimating the 
unknown future payments, the ultimate losses and the appropriate reserves.

Figure 1  Illustration of a run-off triangle

Source: Own construction based on Wüthrich and Merz (2008)

Incremental claims Xi j

Development year j

Unknown values to be estimated

       0               1              2              3               4           . . .              j                 . . .             J
Accident

year i

0

1

2

3

4

i

I

. .
 .

. .
 .



2024

427

104 (4)STATISTIKA

2.1 Classical approaches to loss reserving
In this article, we apply two different approaches to reserving. One of them, called Chain-ladder, can 
be classified as a classical approach to loss reserving, since it is a time-tested methodology proving its 
effectiveness across diverse insurance scenarios. Such classical methods are popular for their balance 
between simplicity and efficiency.

The Chain-ladder method, see e.g. Mack (1993), is one of the fundamental deterministic approaches 
utilized in non-life insurance reserving. It gained its success mainly due to its simplicity and easy 
applicability. It operates on the assumption that historical development patterns will persist into the 
future. Let Ci,j represent the cumulative amount of claims occurred during accident year  and paid till 
development year delay j. The chain-ladder estimates the unknown values with the use of so-called 
development factors f0, ..., fJ–1, that connect cumulative values in the j-th and j + 1-th column and which

are estimated as the ratios
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. . . . While the Chain-ladder method 
provides a practical and intuitive framework, its simplicity may cause inaccuracies of estimates in more 
complex insurance cases. For further details about the Chain-ladder, see Wüthrich and Merz (2008)  
or Cipra (2010).

The univariate Chain-ladder can be generalized to its multivariate version, where several run-off 
triangles are considered at once. Considering claims from more triangles allows for a detailed analysis 
of the impact of various covariates on the development patterns of claims. This approach can lead to 
improving the precision of loss reserving.

The multivariate Chain-ladder can be expressed within the SUR (Seemingly Unrelated Regression) 
framework, which is beneficial for the robustness of parameter estimates in situations when there are 
correlations in the error terms across equations. This model was introduced in Zhang (2010). When 
considering N development triangles, one works with vectors of cumulative claims ( ) ( )( )'1

, , ,, , N
i k i k i kC C= …C  

in the model , 1 , ,i k k i k i k+ = + ε. , where Bk is a development matrix of type N × N in development period  
k and εi,k is an N-dimensional random vector with several assumptions imposed on it. For these assumptions 
and more details on the multivariate Chain-ladder see Zhang (2010).

In addition to the models based on the Chain-ladder approach, there is also a number of similar models 
that work with development triangles, e.g., Bornhuetter–Ferguson, Benktander–Hovinen or Cape–Cod 
model (see, e.g., Wüthrich and Merz, 2008).

2.2 State-space models in loss reserving
A different approach to loss reserving that is considered in this article is so-called state-space modeling, 
where a linear state-space model plays a significant role in non-life insurance loss reserving. In this 
framework, one still works with aggregated claims ordered primarily to run-off triangles, but these 
triangles are transformed into the time series that are then modeled. The linear state-space models assume 
that the unobservable states and their observations follow linear relationships over time. Generally, such  
a model is given by the following system of equations:

yt = Zt αt + εt ,   � (1)

αt + 1 = Tt αt + Rt ηt ,   �  (2)

where yt is a p-dimensional observation vector at time t, αt is an m-dimensional state vector at time t, 
Zt, Tt, and Rt are matrices of parameters of types (p × m), (m × m) and (m × k), respectively. Random 
vectors εt and ηt are assumed to be normally distributed, where εt~N(0, Ht) is a p-dimensional random 
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vector and ηt~N(0,Qt) is a k-dimensional random vector with covariance matrices Ht and Qt, respectively. 
Moreover, εt and ηt are assumed to be independent. Since the state vectors are estimated by a recursive 
algorithm in time, it is also necessary to set an initial state α1, fulfilling α1~N(a1,P1), which is independent 
to εt and ηt (a1 and P1 are some initial estimates).

This linear framework offers mathematical tractability and flexibility, allowing for efficient estimation 
and prediction using the Kalman filter (see Brockwell and Davis, 1991). The practical implementation 
can be realized by means of a selected software, e.g., using KFAS package available in software R and 
introduced in Helske (2017).

As mentioned above, run-off triangles need to be transformed to the form of time series. Then, they 
can enter the model as the observation vector yt. There are several ways how to order claims occurring 
in the development triangle. A row-wise ordering, resulting in time series with missing observations, 
was introduced in Atherino et al. (2010). Supposing normality of data is in this particular task vastly 
simplistic, thus, in order to meet the assumption of normality in the state-space model, Hendrych and 
Cipra (2021) introduced a log-normal model, assuming log-normal distribution of incremental claims. 
Hence, when working with logarithmically transformed incremental claims, one obtains the normal data.

The considered log-normal model is given by the following equations:

 ( ) ( ) ( ) ( )0
t t t ty n y n n nα ε− = + ,                                   � (3)

 ( ) ( ) ( )1 1 ,t t s tn n nα α η+ − += +     � (4)

where  ( )  and  represent the logarithmized incremental claims with appropriately adjusted 
index after row-wise ordering in the n-th run-off triangle for n = 1, . . ., N. The values  correspond 
to the logarithmized values from the first column of the n-th run-off triangle. Their subtraction in (3) 
is considered as a setting of initial levels in the observation equation. For random variables ( )  and 

 we suppose ( ) ( )( )~ 0, ,t n N n nεε σ  and  ( ) ( )( )~ 0, ,t n N n nηη σ , respectively. 
Formulas (3) and (4) need to be transformed into their matrix forms that correspond to Formulas (1) 

and (2). Then it is possible to use appropriate software to estimate the model and subsequently forecast 
the missing observations in vector .

Based on Hendrych and Cipra (2021), the matrix form of the log-normal model is: 
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where ( ) ( )( )'
1 , , t t ty y N= …y , ( ) ( )( )'0 0 01 , , 1t t ty y= …y , ( ) ( )( )'

1 , , t t t Nε ε= …ε ,  

                                                                             ,   

Moreover, residual vectors εt and ηt have covariance matrices ( ) ( )( ) , 1, , 
,t t m n N

Var m nεσ = …
= =ε H

and ( ) ( )( )
, 1, , 

,t t m n N
Var m nησ = …

= =η Q , respectively.
After using Kalman smoothing and obtaining smoothed time series, one can transform the obtained 

values back to their original scale and proceed to the reserve calculation.

2.3 Preliminary clustering of loss data
Since in many cases it can be advantageous to work with more run-off triangles, rather than with single 
one, as mentioned above, one can deal with the problem of optimal distribution of claims to several groups 
that are then represented by individual development triangles. In some situations, the run-off triangles 
are naturally separated but, in many cases, there is only one portfolio of insurance claims with a potential 
to group it into more than one subportfolios. For this purpose, one can use various clustering methods.

Clustering corresponds to the grouping of similar elements based on their characteristics and identifies 
patterns and relationships within the data. In the context of loss reserving, one can assume that policies 
with comparable risk factors and exposure may have similar claim development behavior. By categorizing 
these policies into clusters with similar risk characteristics, insurers can take such a clustering into account 
in their loss reserving models to better capture the unique dynamics within each group.

In literature, there are numerous methods of unsupervised clustering that can be used in the context 
of insurance claims. In Vejmělka (2023), several methods, that are implemented in software R, have been 
compared. Namely, the function called balanced_clustering from the package anticlust, see Papenberg 
and Klau (2021), the function Kmeans from the stats package, proposed in Hartigan and Wong (1979), 
the function Mclust in the package mclust, see Scrucca et al. (2016), and the function Clara_Medoids  
in package ClusterR, introduced in Kaufman and Rousseeuw (1990). 

Since in Vejmělka (2023) the CLARA (Clustering Large Applications) method provided the best results 
among the clustering methods involved in the comparison study, it is also preferred in the numerical 
study which is a part of this article. CLARA is an algorithm that extends the PAM (Partitioning Around 
Medoids) algorithm. PAM itself is an effective clustering method, however, it can be numerically complex 
in the case of large datasets due to its quadratic time complexity. This can be considerably problematic  
in the context of insurance data that can be quite extensive. The aim of CLARA is to overcome this 
limitation by performing the clustering on a subset of the data, which results in more computationally 
acceptable situation for larger datasets.

CLARA can be described as a three-step process. In the first step, multiple randomly chosen subsamples 
of the dataset are selected. The PAM algorithm is then applied to each subsample, medoids are calculated and 
observations from the subsamples are assigned to the appropriate clusters. Secondly, the obtained clusters 
are evaluated based on their overall stability. Finally, the most stable medoids and clusters are selected.

A completely different approach involves machine learning algorithms using neural networks. They can 
identify complex patterns within large datasets and due to the automatic process of identifying clusters, 
the need of manual interventions is reduced which can speed up the analysis. Nevertheless, complex 
deep learning models usually operate as black boxes, which results in very difficult or even impossible 
interpretation of the underlying decision-making processes. This lack of transparency can be a significant 
problem, especially in insurance, where interpretability is crucial for regulatory compliance. Several 
examples and references may be found, e. g., in Du (2010) or Kauffmann et al. (2022).

( ) ( )( )'
1 ,0, , 0, , ,0, , 0t t t Nη η= … … …η

( ) ( ) ( ) ( )( )'
1 11 , , 1 , , , , .t t t s t t sN Nα α α α− + − += … … …α



ANALYSES

430

3 REGULATORY FRAMEWORK: CLAIMS DEVELOPMENT RESULTS 
Solvency II and IFRS 17 represent two distinct regulatory frameworks used in the insurance industry, 
each with its own set of objectives and requirements. Solvency II, which has been established by the 
European Union, focuses primarily on ensuring the financial stability and solvency of insurance 
companies operating within the EU. It requires thorough evaluation of risks and sufficient capitalization 
to protect policyholders and keep market credible. In contrast, IFRS 17, an accounting standard 
developed by the International Accounting Standards Board, deals mainly with financial reporting 
and accounting standards for insurance contracts. It aims to enhance transparency and comparability  
of financial statements by requiring insurers to provide more detailed information about their insurance  
contracts.

The fundamental difference between Solvency II and IFRS 17 from a computational point of view 
subsists mainly in the fact that Solvency II considers risk over a one-year time horizon, whereas IFRS 
17 is based on the fulfilment cash flows over their lifetime, see England et al. (2018). Reserves estimated 
using appropriate reserving methods can be used as one of the inputs to estimate future claims liabilities 
when determining the Best Estimate under IFRS 17. However, the Best Estimate may also incorporate 
additional modifying considerations and extensions. 

In the Solvency II framework, it is fundamental to assess the insurer’s ability to meet its obligations 
over a one-year horizon, as outlined in Pillar 1 (Quantitative Requirements). The methodology denoted 
as Claims Development Results (CDR) plays an important role in this process. It offers an insight 
into the development of insurance claims over time, specifically enabling insurers to project claims 
liabilities for the forthcoming year. It can be used for estimation of Solvency Capital Requirement 
(SCR), which is a key component of Solvency II. To estimate the SCR, a log-normal distribution with 
the mean equal to the expected ultimate loss and the standard deviation corresponding to the standard 
deviation of the CDR, is often applied. Then the -th percentile of this distribution can be used as the 
estimate of the SCR. One can find a more detailed information, e.g., in England et al. (2018) or Munroe  
et al. (2018).

The observable CDR for accident year i and accounting year I + 1 has been defined in England et al. 
(2018) in the following way:

           � (7)

where  and  are the reserves for the claims occurred at year i estimated at time I and I + 1, 
respectively. Value Xi,I–i + 1 is an appropriate incremental claim. Finally,  and  are the estimates  
of ultimate claims calculated at time I and I + 1, respectively (all for accident year i). The aggregated 
CDR is then defined as:

 ( ) ( )
1

1 1 .
I

i
i

CDR I CDR I
=

+ = +∑     � (8)

	 Since one of the goals of the numerical study is to compare the considered reserving methods how 
accurately they can estimate the actual values of the reserves and CDRs, we have to use some aggregate 
metric for the CDR comparison. For this purpose, we use a little modified form of the so-called CDR 
score introduced in Balona and Richman (2020):
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For each claim information on ID, which serves to distinguish different claims, its Type (two possible 
types), accident month AM and Ultimate value, is known. Additionally, each row corresponds to one 
payment of amount Payment paid in month PM. 

where the difference lies in the choice of the absolute value of CDRi(I + 1) instead of the square function  
considered in the mentioned article. The aim is to minimize the CDR score which means that one has 
stable reserves with a reasonable change in reserves between calendar years I and I + 1. Therefore, one 
should calculate this metric in addition to the reserve estimation.

4 CLAIMS PORTFOLIO GENERATORS
In order to effectively evaluate considered methods in practice, it is necessary to apply them across a large 
number of portfolios. Additionally, having the data about the future development of such claims, in the 
language of run-off triangles to know the values in the lower triangle as well, is crucial for comparison  
of the reserves against actual outcomes. Therefore, an ideal solution consists in application of an insurance 
claims generator, which addresses both of these requirements. However, it is important to construct and 
calibrate these generators consistently to reflect the characteristics of real portfolios as closely as possible. 
In the numerical study presented in this paper, we apply the aforementioned methods to portfolios 
generated by three distinct generators, which are described in the following three subsections. 

4.1 Generator based on real Czech data
The first generator used for insurance claims portfolios creation is the one created by the authors 
that is based on a real insurance claims portfolio delivered by the Czech Insurers’ Bureau. This 
particular portfolio consists of claims paid by the guarantee fund administered by the Czech Insurers’ 
Bureau, which covers expenses arising from incidents caused by vehicles without third-party liability 
insurance or unidentified vehicles where the responsible party is unknown. Our data concerned 
exclusively the claims that occurred between years 2001 and 2010. Furthermore, we considered several 
adjustments of the underlying portfolio which, however, do not affect the credibility of the generated  
portfolios.

The generator has been constructed applying maximum likelihood and kernel density estimation. First, 
the corresponding volume of claims is generated and for each claim its type is determined. Furthermore, 
the year of the claim occurrence and, based on the type of claim, the number of payments, the time until 
settlement and the size of claim are simulated. Since the number of payments and their delays often 
influence the value of these payments, this is also considered during the simulation. A portfolio, generated 
in this way, should have similar properties as the original portfolio.

This generator was used to generate 500 portfolios consisting of approximately 65 000 claims.  
An illustration of these data can be found in Table 1.

Table 1  Illustration of data in Czech Insurers’ Bureau portfolios

Source: Own construction

ID Type AM PM Payment Ultimate

1 1 64 69 23 706 23 706

2 1 109 124 40 813 40 813

3 2 94 101 9 629 36 704

3 2 94 112 4 587 36 704

3 2 94 122 22 488 36 704
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4.2 Generator Gabrielli and Wüthrich (2018)
The second generator proposed in Gabrielli and Wüthrich (2018) is based on neural networks to incorporate 
individual claims feature information. This individual claims history simulation machine was constructed 
applying a neural network architecture which was calibrated to real insurance data that have occurred 
between 1994 and 2005. For each of these claims, there is available additional information, such as the 
line of business or age of the injured, together with 12 years of claims development.

The architecture of this individual claims simulation machine consists of eight steps. Firstly, reporting 
delays that correspond to the differences between accident and reporting years are simulated. This  
is followed by payment indicator simulation, whether there are any payments or not. In the third 
step a number of payments is simulated, followed by a total claim size simulation. The last four steps 
then serve for cash flows modeling. For a detailed description of the simulation machine see Gabrielli  
and Wüthrich (2018). 

After some adjustments that are necessary before clustering, which mainly consisted in excluding 
redundant information from the data, 500 portfolios comprising approximately 320 000 claims were 
generated. A few examples of generated data can be found in Table 2.

Table 2 Illustration of data in Gabrielli and Wüthrich portfolios

Source: Own construction

ID LoB AY AQ Age RepDel Payment PayDel

1 4 1994 4 25 0 97 1

2 1 1994 2 39 0 1 476 0

2 1 1994 2 39 0 705 1

3 1 1994 1 38 0 5 709 0

3 1 1994 1 38 0 2 358 2

In addition to ID, for each claim it is also known its accident year AY, accident quarter AQ, reporting 
delay RepDel, age of the injured Age and line of business LoB (four possible types). In this case, each row 
corresponds to one payment of amount Payment paid with delay PayDel.  

4.3 Generator Wang and Wüthrich (2022)
The third individual claims generator introduced in Wang and Wüthrich (2022) is based on the  
R package SynthETIC of Avanzi et al. (2021). The SynthETIC simulator specifically allows for desirable 
data features typically occurring in practice. It has been structured in such a way that the generated 
portfolio of claims should resemble an auto liability portfolio. Moreover, its code has a modular form. 
The generator consists of eight modules such as, e.g., claim occurrence date, number of partial payments, 
sizes of partial payments without allowance for inflation, distribution of payments over time or claim 
inflation. Such an independent coding allows adjustments in each module, their possible replacements 
or removal according to a particular purpose.

This simulator has been modified by Wang and Wüthrich. They have complemented this simulation 
environment with additional claim features resulting with the enhanced generator. For more details see 
Wang and Wüthrich (2022).

Similarly, as in the previous generator, several adjustments in the generated portfolios have been 
considered. Again, 500 portfolios were generated, in this case each with approximately 50 000 claims. 
An illustration of the data follows (see Table 3).
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Variable ID has the same meaning as before. Each claim is described by its accident year AY and its 
Type (six possible classes). Again, each row corresponds to one payment of amount Payment paid with 
delay PayDel.  

The clustering method CLARA described in Section 2.3 requires the feature matrix entering  
the clustering process in a numerical form, i.e., it is necessary to transform the categorical variables,  
such as Type, LoB or AQ into dummy variables. Moreover, variable Age is further considered in the form 
of three dummy variables , (≤ 30, ≥ 51 and the interval between).

5 COMPARISON OF NUMERICAL STUDY RESULTS
This section deals with the numerical study using data created by means of generators from Section 4. 
The generators create not only the data in the upper run-off triangle in Figure 1, that are used for claim 
reserves prediction, but also for the predicted lower triangle in Figure 1. Hence, one can evaluate for each 
generated portfolio the accuracy of particular reserve methods.

Given that the log-normal model assumes the log-normality of incremental claims, it is also important 
to verify that such an assumption holds for the considered data. There are several tests that can be used, 
both those that test directly the log-normality of incremental claims and also those that test the normality 
of the logarithmized values. In our case we have chosen the well-known Kolmogorov-Smirnov test that 
was used for random samples of claims of size 500, since the total number of generated incremental 
claims is too large. Repeated testing for various random samples has shown that the null hypothesis  
of log-normality of the data cannot be rejected.

5.1 Results of numerical study
For each portfolio, introduced in Subsections 4.1–4.3, the main interest concerns comparing deviations 
of reserves from the actual values and modified CDR scores presented in Section 3 for the considered 
reserving method described in Section 2. This is achieved using graphs with boxplots. Results for the 
Czech portfolio presented in Section 4.1 follow.

Figure 2 presents deviations among estimated and actual reserves depicted graphically by means  
of boxplots over 500 portfolios generated by the Czech data generator from Section 4.1 for particular 
reserve methods (Chain-ladder, Chain-ladder clustered, log-normal model and log-normal model 
clustered). Figure 3 is analogous for modified CDR score.

In addition to the boxplots presented in Figures 2 and 3, one can be interested in the accuracy  
of individual estimates, not only the aggregated reserve. For this purpose, we consider two approaches 
how to measure and compare the accuracy of considered reserving methods concerning individual  
estimates. 

Table 3 Illustration of data in Wang and Wüthrich portfolios

Source: Own construction

ID Type AY Payment PayDel Ultimate

1 1 1 2 434 1 2 434

2 4 1 11 017 0 34 110

2 4 1 11 815 1 34 110

2 4 1 11 278 2 34 110

3 3 1 2 428 1 2 428
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In the first case, the accuracy of estimates in individual calendar years following the last accounting year 
for which the claims are known is compared. Graphical results are presented only for the first portfolio 
to save space. For each subdiagonal in the lower run-off triangle, we calculate the following value:
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Figure 2  Deviations of reserves – Generator based on real Czech data

Figure 3  Modified CDR score – Generator based on real Czech data
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where k > I. Values Dk for the considered reserving methods are shown by means of  the  graph  
in Figure 4.

Source: Own construction

Figure 4  Deviations development – Generator based on real Czech data

Since the second approach to the accuracy of individual estimates is applied to all three portfolios,  
it will be presented at the end of this subsection.

For the second portfolio from Section 4.2, we present the results corresponding to the deviations  
of reserves and modified CDR score in the same form as for the first portfolio, see Figures 5 and 6.

Figure 5  Deviations of reserves – Generator Gabrielli and Wüthrich (2018)
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Finally, boxplots corresponding to the results obtained for the third portfolio from Section 4.3 are 
given in Figures 7 and 8.

Figure 6  Modified CDR score – Generator Gabrielli and Wüthrich (2018)

Source: Own construction

Source: Own construction

Figure 7  Deviations of reserves – Generator Wang and Wüthrich (2022)
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The second approach mentioned above compares all the estimated values in the lower run-off triangle 
(see Figure 1). The corresponding metric is calculated as the sum of squared differences of estimated and 
actual values (we call it the modified Frobenius norm). Since for each generated portfolio one obtains 
one value for each reserving method, we present medians of these values in Table 4.

Source: Own construction

Figure 8  Modified CDR score – Generator Wang and Wüthrich (2022)

Table 4  Medians of modified Frobenius norm of estimated run-off triangles

Source: Own construction

Portfolio Chain-ladder Chain-ladder – 
clustered Log-normal model Log-normal model – 

clustered

Gen. based on real 
Czech data 6 832 916 6 828 086 7 497 782 7 269 261

Gen. Gabrielli  
and Wüthrich 130 800 126 495 144 577 126 337

Gen. Wang  
and Wüthrich 1 732 335 1 728 779 2 193 398 2 179 933

5.2 Discussion of results
The results obtained in Section 5.1 allow us to compare the considered reserving methods including the 
impact of clustering. Figure 2 shows that Chain-ladder achieves significantly better results when compared 
to the log-normal model. The Chain-ladder boxplot values are lower than in the case of the log-normal 
model and the median of deviations is notably lower as well. One can see that clustering considerably 
improves the estimates, since for both reserving methods the boxplots narrowed down. Applying  
the paired sign test for equality of medians, the null hypothesis is strongly rejected (with p-value less 
than 0.001) in both cases in favor of one-sided alternative. This confirms the significant improvement 
of the accuracy of reserve estimates after clustering. Without clustering, the Chain-ladder dominates  
the log-normal model, but after incorporating clustering, the difference almost disappears.
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In Figure 3, where the modified CDR scores are compared, a slight improvement after clustering can 
be seen as well, however, it is nearly negligible for the log-normal model. When comparing the methods 
by means of a graph showing the deviations development over individual calendar years (Figure 4), one 
can see that the Chain-ladder achieves almost always lower values than the log-normal model. In the 
first half, the most accurate variant was the clustered version, in the second half the non-clustered one. 

Similar results as in Figure 2 can be found in the remaining figures corresponding to the other considered 
portfolios. Again, the pairwise sign tests confirm clustering improvement. However, significantly lower 
values of the modified CDR score can be observed for the log-normal model. 

All reserving methods are also compared with respect to the modified Frobenius norm introduced  
in Section 5.1. Table 4 contains medians of the calculated norm values for each generated portfolio and one 
can see that also according to this table, the clustering improves the estimates. However, the dominance 
of the Chain-ladder persists.

CONCLUSION
This article discussed the importance of loss reserving in non-life insurance and compared two different 
reserving methodological methods – the Chain-ladder method and the state-space modeling. It also 
confirmed the significance of clustering in the context of loss reserving. The concept of run-off triangles 
and how actuaries can use statistical techniques and mathematical models to analyze the patterns within 
the run-off triangles to estimate future payments and appropriate reserves were explained. Additionally, 
we provided an overview of two distinct regulatory frameworks used in insurance, Solvency II and IFRS 
17, and introduced the CDR approach. In this context, the paper can be useful for actuaries dealing with 
reserve estimation in non-life insurance practice.

In the numerical study, we presented the comparison of deviations of reserves from actual values 
and modified CDR scores for different reserving methods using boxplots. We discussed the accuracy  
of estimates in individual calendar years and explored the overall accuracy of the estimates. The numerical 
study demonstrated the benefit of clustering when considered in loss reserving. The results show that 
the Chain-ladder achieved better results when compared to the log-normal model, and that clustering 
considerably improved the estimates for both reserving methods. We also discussed the accuracy 
of individual estimates and presented graphical results for the first portfolio.

The obtained results may serve as a hint to improve the state-space methodology in order to 
give comparable results with classical approaches to reserving. The reason is obvious: in future the  
so-called micro reserving will play a key role in non-life insurance reserving based on neural networks 
and deep learning where the classical methods of the type of Chain-ladder will be quite insufficient for 
the corresponding computational procedures (see, e.g., Avanzi et al., 2021; Balona and Richman, 2020; 
Gabrielli and Wűthrich, 2018; Wang and Wűthrich, 2022; Wűthrich and Merz, 2008). One can also try 
to extend the one step ahead CDR predictions to the ones for more steps ahead in multivariate run-off 
triangles including analytical formulas for prediction errors.
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