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Appendix - Model

It is a New Keynesian model of two economies, originally presented in Kolasa

(2009). The model assumes that there are only two economies in the world:

domestic economy (indexed by H and represented by the Czech economy)

and the foreign economy (indexed by F and represented by the Euro Area).

Each economy is populated by a continuum of infinitely-lived inhabitants,

in the domestic economy distributed over the interval [0, n] and in the for-

eign economy over the interval [n, 1]. Both economies produce a continuum

of differentiated tradable (non-tradable) goods that is also distributed over

the interval [0, n] in the domestic economy, and over the interval [n, 1] in

the foreign economy. The parameter n, therefore, represents the relative

size of the domestic economy with respect to the foreign economy. Because

both economies are modeled in the same way, the assumptions about repre-

sentative agents as well as the parameters and variables of the model have

the same interpretation in both economies. Moreover, derived equations de-

scribing the behavior of the economy have the same structural form in both

economies. Therefore, I will describe the assumptions about agents and their

optimization problems only in the domestic economy, knowing that the same

optimization problems hold for the foreign economy. Parameters and vari-

ables in the foreign economy are distinguished from those in the domestic

economy by an asterisk and for distinguishing tradable goods produced in

the domestic economy and foreign economy I employ the subscripts ”H” and

”F”. For example, C∗H denotes foreign consumption of goods produced in

the domestic economy (i.e. Czech export of consumption goods), while CF

denotes domestic consumption of goods produced in the foreign economy (i.e.

Czech import of consumption goods).
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Households

Households in a given economy are assumed to be homogenous. Households

consume tradable and non-tradable goods produced by firms and make their

intertemporal decisions about consumption by trading bonds. Households

also supply labor and rent capital to firms. A typical household j in a domes-

tic economy seeks to maximize its life-time utility function, which is function

of household’s consumption Ct(j) and labor effort Lt(j). The utility function

is in the form CRRA function (constant relative risk aversion function)

Ut(j) = Et

∞∑
k=0

βk
[
εd,t+k
1− σ

(Ct+k(j)−Ht+k)
1−σ − εl,t+k

1 + φ
Lt+k(j)

1+φ

]
, (1)

where Et denotes expectations in the period t, β is a discount factor, σ is an

inverse elasticity of intertemporal substitution in consumption, Ht = hCt−1

is an external habit taken by the household as exogenous, h is a parameter

of habit formation in consumption, Ct is a composite consumption index (to

be defined later), φ is an inverse elasticity of labor supply, εd,t is a prefer-

ence shock in the period t, which influences intertemporal decisions about

consumption and εl,t is a labor supply shock in the period t.

Maximization of the utility function (1) is subject to a set of flow budget

constraints given by

PC,tCt(j) + PI,tIt(j) + Et{Υt,t+1Bt+1(j)} = Bt(j) +Wt(j)Lt(j)

+RK,tKt(j) + ΠH,t(j) + ΠN,t(j) + Tt(j), for t = 0, 1, 2 . . . ,
(2)

where PC,t denotes the price of the consumption Ct, PI,t is the price of in-

vestment goods It, Bt+1 is the nominal payoff in period t+ 1 of the portfolio

held at the end of period t,Wt is the nominal wage, RK,t denotes income of

households achieved from renting capital Kt, ΠH,t and ΠN,t are dividends

from tradable and non-tradable goods producers and Tt denotes lump sum

government transfers net of lump sum taxes. Υt,t+1 is the stochastic discount

factor for nominal payoffs, such that EtΥt,t+1 = R−1t , where Rt is the gross

return on a riskless one-period bond.
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Consumption Choice

First order condition of optimality for intertemporal decisions about con-

sumption is in the form of a standard Euler equation

βRtEt

{
εd,t+1

εd,t

(
Ct+1 − hCt
Ct − hCt−1

)−σ
PC,t
PC,t+1

}
= 1. (3)

Consumption index Ct consists of final tradable goods index CT,t and non-

tradable goods index CN,t which are aggregated according to

Ct =
Cγc
T,tC

1−γc
N,t

γγcc (1− γc)1−γc
,

where γc denotes share of final tradable goods in consumption of house-

holds. Following Burstein et al. (2003) and Corsetti and Dedola (2005),

it is assumed that consumption of a final tradable good requires ω units of

distribution services YD,t, which implies

CT,t = min{CR,t;ω−1YD,t}. (4)

The consumption index of raw tradable goods is defined as

CR,t =
Cα
H,tC

1−α
F,t

αα(1− α)1−α
,

where α denotes share of domestic goods in the domestic basket of raw trad-

able goods1 , CH,t is an index of home-made raw tradable goods and CF,t is

1Here I depart from the original specification of the model. Following Herber (2010)
and Herber and Němec (2012) I am using a modified version of the model. Besides cor-
recting several obvious typos, the modification is based on a different definition of the
parameter α∗. In the original specification this parameter would be defined as a share
of the Czech tradable goods in the overall index of the tradable goods in the Euro Area,
while in the modified specification this parameter is defined as a share of the tradable
goods produced in the Euro Area in the overall index of tradable goods in the Euro Area.
It implies that the parameter α∗ in the original specification is equal to 1−α∗ in the modi-
fied specification, which results in different structural forms of several equations. However,
after substituting the actual calibrated values of the parameter α∗ into the equations and
correcting two obvious typos, we can see that the equations in both specifications are the
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an index of foreign-made raw tradable goods, both consumed in the domestic

economy and defined as

CH,t =

[(
1

n

) 1
φH
∫ n

0

Ct(zH)
φH−1

φH dzH

] φH
φH−1

,

CF,t =

[(
1

1− n

) 1
φF
∫ 1

n

Ct(zF )
φF−1

φF dzF

] φF
φF−1

,

where φH (φF ) is an elasticity of substitution between domestic (foreign)

raw tradable goods, consumed in the domestic economy. Analogously, the

consumption index of non-tradable goods is defined as

CN,t =

[(
1

n

) 1
φN
∫ n

0

Ct(zN)
φN−1

φN dzN

] φN
φN−1

,

where φN is an elasticity of substitution between domestic non-tradable

goods.

Let us now discuss intratemporal decisions households make about con-

sumption. First of all, households have to choose how many tradable goods

and non-tradable goods they want to consume. Formally, households want

to maximize consumption2

Ct =
Cγc
T,tC

1−γc
N,t

γγcc (1− γc)1−γc
, (5)

conditionally on their consumption expenditures

PC,tCt = PT,tCT,t + PN,tCN,t.

same. The reason why I use the modified specification is as follows: In my opinion, the
modified definition of α∗ better corresponds to the definition of its counterpart in the
domestic economy α.

2Equivalently, we can think about households wanting to minimize their consumption
expenditures for a given level of their consumption.
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The first order conditions for an optimal allocation of consumption expendi-

tures between tradable and non-tradable goods imply that

CN,t = (1− γc)
(
PN,t
PC,t

)−1
Ct, (6)

CT,t = γc

(
PT,t
PC,t

)−1
Ct. (7)

After substituting these allocation functions, i.e. (6) and (7), into the com-

posite consumption index (5), we get a corresponding composite price index

in the form

PC,t = P γc
T,tP

1−γc
N,t . (8)

Consequently, household have to make a choice between home-made trad-

able goods and foreign-made tradable goods. As mentioned above, price of

tradable goods PT,t depends on the price of raw tradable goods PR,t and also

on the price of non-tradable distribution services PN,t. Formally,

PT,t = PR,t + ωPN,t. (9)

The price of distribution services is the same for both home-made tradable

goods and foreign-made tradable goods, so it does not influence households’

choice between them. Therefore, it is correct to assume that households want

to maximize consumption of raw tradable goods

CR,t =
Cα
H,tC

1−α
F,t

αα(1− α)1−α
, (10)

conditional on their expenditures on raw tradable goods

PR,tCR,t = PH,tCH,t + PF,tCF,t. (11)
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First order conditions of this maximization problem require

CH,t = αγc

(
PH,t
PR,t

)−1(
PT,t
PC,t

)−1
Ct, (12)

CF,t = (1− α)γc

(
PF,t
PR,t

)−1(
PT,t
PC,t

)−1
Ct, (13)

where I use the equilibrium condition CR,t = CT,t and FOC condition (7).3

After substituting these FOCs, i.e. (12) and (13), into the consumption

index of raw tradable goods (10), we get a corresponding price index of raw

tradable goods in the form

PR,t = Pα
H,tP

1−α
F,t . (14)

Finally, households have to choose which particular goods they want to con-

sume. I show their optimization problem only for non-tradable goods as

these optimization problems are analogous for home-made tradable goods

and foreign-made tradable goods. Households want to minimize their expen-

ditures on non-tradable goods∫ n

0

Pt(zN)Ct(zN)dzN ,

conditional on their consumption level of non-tradable goods

CN,t =

[
1

n

∫ n

0

Pt(zN)1−φNdzN

] 1
1−φN

All these three minimization problems lead to first order conditions in the

3Condition CR,t = CT,t is implied by (4), where the other potential condition CT,t =
ω−1YD,t is not stable, because it would suggest that there are not enough distribution
services to satisfy demand of households for tradable goods.
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form

Ct(zN) =
1

n
(1− γc)

(
Pt(zN)

PN,t

)−φN (PN,t
PC,t

)−1
Ct

Ct(zH) =
1

n
γcα

(
Pt(zH)

PH,t

)−φH (PH,t
PR,t

)−1(
PT,t
PC,t

)−1
Ct

Ct(zF ) =
1

1− n
γc(1− α)

(
Pt(zF )

PF,t

)−φF (PF,t
PR,t

)−1(
PT,t
PC,t

)−1
Ct.

Corresponding price indices are in the form

PN,t =

[
1

n

∫ n

0

Pt(zN)1−φNdzN

] 1
1−φN

PH,t =

[
1

n

∫ n

0

Pt(zH)1−φHdzH

] 1
1−φH

PF,t =

[
1

1− n

∫ 1

n

Pt(zF )1−φF dzF

] 1
1−φF

Similar optimization problems and resulting optimality conditions hold also

for the foreign economy and are distinguished from those in the domestic

economy by superscript ”∗”.

Investment Decisions

Households use part of their income to accumulate capital Kt, assumed to

be homogenous, which they rent to firms. Capital is accumulated according

to the formula

Kt+1 = (1− τ)Kt + εi,t

(
1− S

(
It
It−1

))
It, (15)

where τ is a depreciation rate of capital and It denotes investment in the

period t. Following Christiano et. al. (2005), capital accumulation is subject

to investment specific technological shock εi,t and adjustment costs repre-
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sented by function S(·).4 This function has to satisfy following properties

S(1) = S ′(1) = 0 and S ′′(·) = S ′′ > 0.

In order to decide how much capital would a household accumulate, it is

again necessary to solve the optimization problem. Household wants to max-

imize its utility expressed by (1), which is subject to the budget constraint

(2) and to the formula for capital accumulation (15). First order conditions

corresponding to capital Kt and investment It imply the following equations

PI,t
PC,t

= εi,t

(
1− S

(
It
It−1

)
− It
It−1

S
′
(

It
It−1

))
QT,t+

+Et

{
PC,t+1

PC,tRt

εi,t+1

(
It+1

It

)2

S
′
(
It+1

It

)
QT,t+1

}
,

(16)

QT,t = Et

{
RK,t+1

PC,t+1

PC,t+1

PC,tRt

}
+ (1− τ)Et

{
PC,t+1

PC,tRt

QT,t+1

}
. (17)

The equation (16) represents the demand for investment and the equation

(17) determines a relative price of installed capital (known as Tobin’s Q)

which is defined as

QT,t =
λK,t

λC,tPC,t
,

where λC,t is a marginal utility of nominal income (it is also a Lagrange

multiplier on households’ budget constraint) and λK,t is a Lagrange multiplier

on the law of motion for capital.

Homogenous investment goods are produced in a similar way as the final

consumption goods, except that there are no distribution costs associated

4It is not important to know the exact form of this function, because a log-linearised
form of the model contains only a second derivative of the function S′′ (regarded as un-
known parameter to be estimated).
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with using tradable investment goods,5 which implies the following definitions

It =
IγiR,tI

1−γi
N,t

γγii (1− γi)1−γi
,

IR,t =
IαH,tI

1−α
F,t

αα(1− α)1−α
,

PI,t = P γi
R,tP

1−γi
N,t

It is assumed that a composition of consumption and investment basket in a

given economy can differ, i.e. parameters γc and γi can be different, and that

composition of tradable baskets is identical, i.e. parameter α is the same

for both tradable consumption goods and tradable investment goods in the

given economy.

Wage Setting

Each household is specialized in a different type of labor Lt(j), which it

supplies in a monopolistically competitive labor market. All supplied labor

types are aggregated into homogenous labor input Lt according to the formula

Lt =

[(
1

n

) 1
φW
∫ n

0

Lt(j)
φW−1

φW dj

] φW
φW−1

,

where φW is the elasticity of substitution between different labor types. A

corresponding aggregate wage index is then defined as

Wt =

[
1

n

∫ n

0

Wt(j)
1−φW dj

] 1
1−φW

,

where Wt(j) denotes a wage of the household j. Cost minimization of firms

implies the following demand schedules for each labor type Lt(j) in the form

Lt(j) =
1

n

(
Wt(j)

Wt

)−θW
Lt. (18)

5Following Burstein et al. (2003).
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Following Erceg, Henderson and Levin (2000), a wage setting mechanism

a-la Calvo in a modified version with partial wage indexation is assumed.

According to this set-up, every period only 1 − θW portion of households

(randomly chosen) can reset their wages optimally, while the remaining por-

tion of households θW adjust their wages according to the indexation rule

Wt(j) = Wt−1(j)

(
PC,t−1
PC,t−2

)δW
,

where δW ∈ (0, 1) is a parameter of wage indexation. If I set δW = 0, I get

the original Calvo wage setting mechanism, where all households which can

not reoptimize their wages leave their wages unchanged. By setting δW = 1,

I get the Calvo wage setting mechanism with full wage indexation, where

all households which can not reoptimize their wages fully adjust their wages

according to the past inflation.

Households, which are allowed to reset their wages optimally, want to

maximize their utility represented by the utility function (1), subject to the

set of budget constraints (2) and labor demand constraints (18), taking into

account the Calvo constraint that they can not always reset their wages.

Formally, households want to maximize

Et

∞∑
k=0

θkWβ
k

[
− εl,t+k

1 + φ
Lt+k(j)

1+φ + λC,t+kWt(j)

(
PC,t+k−1
PC,t−1

)δW
Lt+k(j)

]
,

which is subject to the following constraint

Lt+k(j) =
1

n

[
Wt(j)

Wt+k

(
PC,t+k−1
PC,t−1

)δW]−φW
Lt+k.

First order condition of this optimization problem is in the form

Et

∞∑
k=0

θkWβ
k

[
Wt(j)

PC,t+k

(
PC,t+k−1
PC,t−1

)δW
− φW
φW − 1

MRSt+k(j)

]
·

· εd,t+k(Ct+k(j)− hCt+k−1)−σLt+k(j) = 0,
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where φW
φW−1

represents gross wage mark-up resulting from certain monopoly

power of the household, MRSt(j) is the marginal rate of substitution between

labor and consumption of household j, defined as

MRSt(j) =
εl,tLt(j)

φ

εd,t(Ct(j)− hCt−1)−σ
.

Since all households face the same optimization problem, they all set the

same optimal wage W̃t. Therefore, the aggregate wage index is then defined

as a weighted average of optimally set wages, and wages which are partially

adjusted according to the past inflation. Formally,

Wt =

θW (Wt−1

(
PC,t−1
PC,t−2

)δW)1−φW

+ (1− θW )W̃ 1−φW
t

 1
1−φW

.

Similar conditions and formulas hold also for the foreign economy. It is

allowed for parameters governing the wage setting of households to differ

between countries.

Firms

Production Technology

There is a continuum of homogenous, monopolistic competitive firms in the

tradable and non-tradable sectors of the domestic economy. The production

functions of firms are represented by Cobb-Douglas functions, homogenous

in labor and capital of degree one (i.e. with constant returns to scale)

Yt(zN) = εaN ,tLt(zN)1−ηKt(zN)η,

Yt(zH) = εaH ,tLt(zH)1−ηKt(zH)η,

where η is the elasticity of output with respect to capital (common to both

sectors, but potentially different in individual countries), and εaH ,t (εaN ,t)

is a productivity shock in the tradable (non-tradable) sector. The index of
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output in each sector is given by Dixit-Stiglitz aggregator

YN,t =

[(
1

n

) 1
φN
∫ n

0

Yt(zN)
φN−1

φN dzN

] φN
φN−1

YH,t =

[(
1

n

) 1
φH
∫ n

0

Yt(zH)
φH−1

φH dzH

] φH
φH−1

.

All firms try to minimize their costs for a given level of production. Formally,

firms try to minimize

min
Lt(zi)
Kt(zi)

WtLt(zi) +RK,tKt(zi) + λi,t(Yt(zi)− εai,tLt(zi)1−ηKt(zi)
η), (19)

for i = N,H. Since all firms have the same technology and face the same

prices of inputs, cost minimization (19) requires the same ratio of capital and

labor for all domestic firms

WtLt
RK,tKt

=
1− η
η

.

Lagrange multiplier λi,t can be interpreted as nominal marginal costs. There-

fore, the real marginal costs, identical for all firms in the given sector, are

defined by the formula

MCi,t =
λi,t
Pi,t

=
1

Pi,tεai,t

(
Wt

1− η

)1−η (
RK,t

η

)η
, for i = N,H. (20)

Price Setting

In this section I shall describe price setting problem of firms in the domestic

non-tradable sector. Price setting of foreign firms as well as firms in the

tradable sector is defined analogously.

Firms in the non-tradable sector set their prices in order to maximize

their profits. It is assumed that firms face modified Calvo restriction with

partial indexation on the frequency of price adjustment. According to this

restriction, every period only 1− θN portion of firms in non-tradable sector
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(randomly chosen) can reset their prices optimally, while θN portion of firms

in non-tradable sector partially adjust their prices according to the past

inflation, following the indexation rule

Pt(zN) = Pt−1(zN)

(
PN,t−1
PN,t−2

)δN
,

where δN is a parameter of price indexation. Setting δN = 0, I get the

original Calvo constraint, as suggested by Calvo (1983). By setting δN = 1,

I get the Calvo constraint with full price indexation, where all firms which

can not reoptimize their prices fully adjust their prices according to the past

inflation.

A firm j, which is allowed to reset its price, chooses the price Pt(zN) in

order to maximize current market value of profits generated until the firm

can again reoptimize its price. Formally, firms solve maximization problem

Et

∞∑
k=0

θkNβ
kλC,t+kYt+k(zN)

[
Pt(zN)

(
PN,t+k−1
PN,t−1

)δN
− PN,t+kMCN,t+k

]
,

taking into account the sequence of demand constraints

Yt+k(zN) =
1

n

[
Pt(zN)

PN,t+k

(
PN,t+k−1
PN,t−1

)δN]−φN
YN,t+k,

where λC,t is the marginal utility of households’ nominal income in period t,

considered by firms as exogenous, and MCN,t is the real marginal costs in

the period t, defined in (20). The first order condition of the maximization

problem of firms implies

Et

∞∑
k=0

θkNβ
kλC,t+kYt+k(zN)

[
Pt(zN)

(
PN,t+k−1
PN,t−1

)δN
−

− φN
φN − 1

PN,t+kMCN,t+k

]
= 0.

(21)

Firms do not face any firm-specific shocks, so all firms in the given sector
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choose the same optimal price P̃N,t. Hence, it is possible to express the

aggregate price index of non-tradable goods as a weighted average of the

optimizing firms’ price P̃N,t, and the price of firms which adjust their price

to the previous inflation

PN,t =

θN (PN,t−1(PN,t−1
PN,t−2

)δN)1−φN

+ (1− θN)P̃ 1−φN
N,t

 1
1−φN

. (22)

Foreign firms and domestic firms in the tradable sector deal with analogous

maximization problems. Therefore, first order conditions and resulting price

indices associated with maximization problems of foreign firms and domestic

firms in tradable sector are analogous to those expressed in equations (21)

and (22). It is assumed that structural parameters of price stickiness θ and

price indexation δ as well as stochastic properties of shocks in productivity

can differ among countries and sectors.

It is assumed that prices are set in the producer’s currency and that

international law of one price holds for intermediate tradable goods. Thus,

prices of domestic goods sold in the foreign economy and prices of foreign

goods sold in the domestic economy are given by formulas

P ∗t (zH) = ER−1t Pt(zH) Pt(zF ) = ERtP
∗
t (zF ),

where ERt is the nominal exchange rate expressed as units of domestic cur-

rency per one unit of foreign currency.

International Risk Sharing

The assumption of complete financial markets implies the perfect risk-sharing

condition. Loosely speaking, this condition requires that prices of similar

bonds must be the same in the domestic as well as in the foreign economy.
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This condition can be expressed using gross returns on these bonds as

Rt = R∗tEt

{
ERt+1

ERt

}
.

This formula requires that gross returns on domestic bonds must be the

same as gross returns on foreign bonds adjusted by expected appreciation

(depreciation) of the foreign currency. By substituting for the gross returns

on domestic and foreign bonds from the Euler equation (3) and after subse-

quent mathematical manipulation we get the formula

Qt = κ
ε∗d,t
εd,t

(C∗t − h∗C∗t−1)−σ
∗

(Ct − hCt−1)−σ
, (23)

where

κ = Et

{
Qt+1

εd,t+1(Ct+1 − hCt)−σ

ε∗d,t+1(C
∗
t+1 − h∗C∗t )−σ∗

}
is regarded as a constant, which (using iterations) depends on initial condi-

tions and Qt is a real exchange rate defined as

Qt =
ERtP

∗
C,t

PC,t
. (24)

Formula (23) implies that the real exchange rate is proportional to the ratio

of marginal utility of consumption between domestic and foreign households.

The real exchange rate can deviate from purchasing power parity (PPP)

because of changes in relative prices of tradable and non-tradable goods,

changes in relative distribution costs and changes in terms of trade, as long

as there is a difference between household preferences among countries, i.e.

α 6= 1 − α∗. This can be demonstrated this by substituting for the price

indices in the definition of real exchange rate (24) from definitions of these

price indices (8), (9) and (14). After some mathematical manipulation we

obtain

Qt = Sα+α
∗−1

t

1 + ω∗D∗t
1 + ωDt

X
∗1−γ∗c
t

X1−γc
t

,
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where St are terms of trade defined as domestic import prices relative to

domestic export prices6

St =
ERtP

∗
F,t

PH,t
,

Xt and X∗t are internal exchange rates defined as prices of non-tradable goods

relative to prices of tradable goods

Xt =
PN,t
PT,t

X∗t =
P ∗N,t
P ∗T,t

and Dt and D∗t are relative distribution costs, defined as prices of non-

tradable goods relative to prices of raw tradable goods

Dt =
PN,t
PR,t

D∗t =
P ∗N,t
P ∗R,t

.

Monetary and Fiscal Authorities

The behavior of central bank is described by a variant of Taylor rule.7

Rt = Rρ
t−1

[
Et

{(
Yt+1

Y

)φy ( PC,t+1

(1 + π)PC,t

)φπ}]1−ρ
εm,t,

where ρ is a parameter of interest rate smoothing, Yt is a total output in the

economy, Y denotes a steady state level of this output, π is a steady state

level of inflation, φy is an elasticity of the interest rate to the output, φπ is

an elasticity of the interest rate to inflation and εm,t is a monetary policy

shock.

Fiscal policy is modeled in a very simple fashion. Government expen-

ditures and transfers to households are fully financed by lump-sum taxes so

6The assumption of law of one price for tradable goods implies S∗t = S−1t .
7Here I depart from the original specification of the model. I changed the specification

of the interest rate rules. In the original model, interest rates depend on current inflation
and output, while in my specification interest rates depend on expected inflation and
expected output. This, in my view, better corresponds with the actual behavior of central
banks in both economies.
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that state budget is balanced every period. Government expenditures consist

only of non-tradable domestic goods and are modeled as a stochastic process

εg,t. Given the assumptions about households, Ricardian equivalence holds

in this model.

Market Clearing Conditions

The model is closed by satisfying the market clearing conditions. Goods

market clearing requires that output of each firm producing non-tradable

goods is either consumed by households in the domestic economy, spent on

investment, used for distribution services or purchased by the government.

Similarly, output of firms producing tradable goods is either consumed or

invested in the domestic or foreign economy. Formally

YN,t = CN,t + IN,t + YD,t +Gt, (25)

YH,t = CH,t + C∗H,t + IH,t + I∗H,t. (26)

By plugging in allocation functions (6), (7), and (12) together with analogous

allocation functions for investment and their foreign counterparts into the

goods market clearing conditions (25) and (26), the aggregate output in both

domestic sectors can be rewritten as

YN,t = (1− γc)
(
PN,t
PC,t

)−1
Ct + ωγc

(
PT,t
PC,t

)−1
Ct+

+(1− γi)
(
PN,t
PI,t

)−1
It +Gt,

(27)

YH,t = αγc

(
PH,t
PR,t

)−1(
PT,t
PC,t

)−1
Ct +

1− n
n

(1− α∗)γ∗c

(
P ∗H,t
P ∗R,t

)−1(
P ∗T,t
P ∗C,t

)−1
C∗t

+ αγi

(
PH,t
PR,t

)−1(
PR,t
PI,t

)−1
It +

1− n
n

(1− α∗)γ∗i

(
P ∗H,t
P ∗R,t

)−1(
P ∗R,t
P ∗I,t

)−1
I∗t ,
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where in (27) I use the following condition of optimality

YD,t = ωCT,t,

which links distribution services with tradable consumption goods. The total

output in the economy is given by the sum of output in tradable and non-

tradable sectors

Yt = YN,t + YH,t.

Finally, market clearing conditions for factor markets requires

Lt =

∫ n

0

Lt(zN)dzN +

∫ n

0

Lt(zH)dzH

Kt =

∫ n

0

Kt(zN)dzN +

∫ n

0

Kt(zH)dzH .

Analogous market clearing conditions hold for the foreign economy, too.

Exogenous Shocks

Behavior of the model is driven by seven structural shocks in each economy:

productivity shocks in tradable sector (εaH ,t and ε∗aF ,t), productivity shocks

in non-tradable sector (εaN ,t and ε∗aN ,t), labor supply shocks (εl,t and ε∗l,t),

investment efficiency shocks (εi,t and ε∗i,t), consumption preference shocks

(εd,t and ε∗d,t), government spending shocks (εg,t and ε∗g,t) and monetary policy

shocks (εm,t and ε∗m,t). Except for monetary policy shocks, all other shocks

are represented by AR1 processes in the log-linearised version of the model,

see (68) - (79). Monetary policy shocks are represented by IID processes in

the log-linearised version of the model.8 I also allow for correlations between

innovations in corresponding domestic and foreign shocks.

8IID - identically and independently distributed
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Log-linearised Model

The model presented above is highly non-linear and does not have any ana-

lytical solution. A log-linear approximation around the non-stochastic steady

state is employed for the purposes of empirical analysis. For details about

methods of log-linear approximation see Uhlig (1995). Nice introduction to

methods used for log-linearising around the steady state is provided by Zi-

etz (2006). In this section I present a log-linearised form of the model. All

variables of the model are in the form of log-deviations from their respective

steady state. Formally, xt = logXt− logX, where X is a steady state value.

The model is formed by 40 equations describing endogenous variables

(from equation (28) to equation (67)) and by 12 equations for exogenous

shocks (from equation (68) to equation (79)). An interpretation of the model

variables is presented in Table 1. Interpretation of the structural parameters

and the parameters related to shocks is presented in Tables 2 and 3.

Market Clearing Conditions:

yH,t =
C

Y H

γcα

1 + ω
(ct + (1− γc)xt + (1− α)st)

+
C
∗

Y H

1− n
n

γ∗c (1− α∗)
1 + ω∗

(c∗t + (1− γ∗c )x∗t + α∗st)

+
I

Y H

γiα (it + (1− γi)(1 + ω)xt + (1− α)st)

+
I
∗

Y H

1− n
n

γ∗i (1− α∗) (i∗t + (1− γ∗i )(1 + ω)x∗t + α∗st)

(28)
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y∗F,t =
C
∗

Y
∗
F

γ∗cα
∗

1 + ω∗
(c∗t + (1− γ∗c )x∗t − (1− α∗)st)

+
C

Y
∗
F

n

1− n
γc(1− α)

1 + ω
(ct + (1− γc)xt − αst)

+
I
∗

Y
∗
F

γ∗i α
∗ (i∗t + (1− γ∗i )(1 + ω∗)x∗t − (1− α∗)st)

+
I

Y
∗
F

n

1− n
γi(1− α) (it + (1− γi)(1 + ω)xt − αst)

(29)

yN,t =
C

Y N

(
(1− γc)(ct − γcxt) +

γcω

1 + ω
(ct + (1− γc)xt)

)
+

I

Y N

(1− γi)(it − γi(1 + ω)xt) +
G

Y N

εg,t

(30)

y∗N,t =
C
∗

Y
∗
N

(
(1− γ∗c )(c∗t − γ∗cx∗t ) +

γ∗cω
∗

1 + ω∗
(c∗t + (1− γ∗c )x∗t )

)
+

I
∗

Y
∗
N

(1− γ∗i )(i∗t − γ∗i (1 + ω∗)x∗t ) +
G
∗

Y
∗
N

ε∗g,t

(31)

yt =
Y H

Y
yH,t +

Y N

Y
yN,t (32)

y∗t =
Y
∗
F

Y
∗ y
∗
F,t +

Y
∗
N

Y
∗ y
∗
N,t (33)

Euler Equation:

ct − hct−1 = Et(ct+1 − hct)−
1− h
σ

Et (rt − πt+1 + εd,t+1 − εd,t) (34)

c∗t − h∗c∗t−1 = Et(c
∗
t+1 − h∗c∗t )−

1− h∗

σ∗
Et
(
r∗t − π∗t+1 + ε∗d,t+1 − ε∗d,t

)
(35)

International Risk Sharing Condition:

qt = ε∗d,t − εd,t −
σ∗

1− h∗
(c∗t − h∗c∗t−1) +

σ

1− h
(ct − hct−1) (36)
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Capital Accumulation:

kt+1 = (1− τ)kt + τ(it + εi,t) (37)

k∗t+1 = (1− τ ∗)k∗t + τ ∗(i∗t + ε∗i,t) (38)

Real Costs of Capital:

rK,t = wt + lt − kt (39)

r∗K,t = w∗t + l∗t − k∗t (40)

Investment Demand:

it − it−1 = βEt(it+1 − it) +
1

S ′′
(qT,t + εi,t)−

γi(1 + ω)− γc
S ′′

xt (41)

i∗t − i∗t−1 = β∗Et(i
∗
t+1 − i∗t ) +

1

S ′′∗
(q∗T,t + ε∗i,t)−

γ∗i (1 + ω∗)− γ∗c
S ′′∗

x∗t (42)

Price of Installed Capital:

qT,t = β(1− τ)EtqT,t+1 − (rt − Etπt+1) + (1− β(1− τ))EtrK,t+1 (43)

q∗T,t = β∗(1− τ ∗)Etq∗T,t+1 − (r∗t − Etπ∗t+1) + (1− β∗(1− τ ∗))Etr∗K,t+1 (44)

Labor Input:

lt = η(rK,t − wt) +
Y H

Y
(yH,t − εaH ,t) +

Y N

Y
(yN,t − εaN ,t) (45)

l∗t = η∗(r∗K,t − w∗t ) +
Y
∗
F

Y
∗ (y∗F,t − ε∗aF ,t) +

Y
∗
N

Y
∗ (y∗N,t − ε∗aN ,t) (46)

Real Wage:

wt − wt−1 =
(1− θW )(1− βθW )

θW (1 + φWφ)
(mrst − wt) + βEt(wt+1 − wt)

+ βEt(πt+1 − δWπt)− (πt − δWπt−1)
(47)
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w∗t − w∗t−1 =
(1− θ∗W )(1− β∗θ∗W )

θ∗W (1 + φ∗Wφ
∗)

(mrs∗t − w∗t ) + β∗Et(w
∗
t+1 − w∗t )

+ β∗Et(π
∗
t+1 − δ∗Wπ∗t )− (π∗t − δ∗Wπ∗t−1)

(48)

Marginal Rate of Substitution:

mrst = εl,t + φlt − εd,t +
σ

1− h
(ct − hct−1) (49)

mrs∗t = ε∗l,t + φ∗l∗t − ε∗d,t +
σ∗

1− h∗
(c∗t − h∗c∗t−1) (50)

Phillips Curve for Tradable Sector:

πH,t − δHπH,t−1 = βEt(πH,t+1 − δHπH,t) +
(1− θH)(1− βθH)

θH
mcH,t (51)

π∗F,t − δ∗Fπ∗F,t−1 = β∗Et(π
∗
F,t+1 − δ∗Fπ∗F,t) +

(1− θ∗F )(1− β∗θ∗F )

θ∗F
mc∗F,t (52)

Phillips Curve for Non-tradable Sector:

πN,t − δNπN,t−1 = βEt(πN,t+1 − δNπN,t) +
(1− θN)(1− βθN)

θN
mcN,t (53)

π∗N,t − δ∗Nπ∗N,t−1 = β∗Et(π
∗
N,t+1 − δ∗Nπ∗N,t)+

+
(1− θ∗N)(1− β∗θ∗N)

θ∗N
mc∗N,t

(54)

Real Marginal Costs in Tradable Sector:

mcH,t = (1− η)wt + ηrK,t − εaH ,t + (1− α)st + (1− γc + ω)xt (55)

mc∗F,t = (1− η∗)w∗t + η∗r∗K,t − ε∗aF ,t + (1− α∗)st + (1− γ∗c + ω∗)x∗t (56)

Real Marginal Costs in Non-tradable Sector:

mcN,t = (1− η)wt + ηrK,t − εaN ,t − γcxt (57)

mc∗N,t = (1− η∗)w∗t + η∗r∗K,t − ε∗aN ,t − γ
∗
cx
∗
t (58)
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Relative Price of Non-tradable Goods:

xt − xt−1 = πN,t − πT,t (59)

x∗t − x∗t−1 = π∗N,t − π∗T,t (60)

Inflation of Tradable Goods:

πT,t =
1

1 + ω
(πH,t + (1− α)∆st + ωπN,t) (61)

π∗T,t =
1

1 + ω∗
(
π∗F,t + (1− α∗)∆st + ω∗π∗N,t

)
(62)

Overall Inflation:

πt = γcπT,t + (1− γc)πN,t (63)

π∗t = γ∗cπ
∗
T,t + (1− γ∗c )π∗N,t (64)

Real Exchange Rate:

qt = (α + α∗ − 1)st + (1− γ∗c + ω∗)x∗t − (1− γc + ω)xt (65)

Monetary Policy Rule:

rt = ρrt−1 + (1− ρ)(ψyEt{yt+1}+ ψπEt{πt+1}) + εm,t (66)

r∗t = ρ∗r∗t−1 + (1− ρ∗)(ψ∗yEt{y∗t+1}+ ψ∗πEt{π∗t+1}) + ε∗m,t (67)

Productivity Shock in Tradable Sector:

εaH ,t = ρaHεaH ,t−1 + µaH ,t (68)

ε∗aF ,t = ρ∗aF ε
∗
aF ,t−1 + µ∗aF ,t (69)

Productivity Shock in Non-tradable Sector:

εaN ,t = ρaNεaN ,t−1 + µaN ,t (70)

ε∗aN ,t = ρ∗aNε
∗
aN ,t−1 + µ∗aN ,t (71)
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Preference Shock:

εd,t = ρdεd,t−1 + µd,t (72)

ε∗d,t = ρ∗dε
∗
d,t−1 + µ∗d,t (73)

Labor Supply Shock:

εl,t = ρlεl,t−1 + µl,t (74)

ε∗l,t = ρ∗l ε
∗
l,t−1 + µ∗l,t (75)

Shock in Government Expenditures:

εg,t = ρgεg,t−1 + µg,t (76)

ε∗g,t = ρ∗gε
∗
g,t−1 + µ∗g,t (77)

Shock in Investment Efficiency:

εi,t = ρiεi,t−1 + µi,t (78)

ε∗i,t = ρ∗i ε
∗
i,t−1 + µ∗i,t (79)
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Table 1: Interpretation of Variables
variable interpretation

ct,c
∗
t consumption

it,i
∗
t investment

yt,y
∗
t total output

yH,t,y
∗
F,t output in tradable sector

yN,t,y
∗
N,t output in non-tradable sector

xt,x
∗
t internal exchange rates

st terms of trade
rt,r

∗
t nominal interest rate

qt real exchange rate
kt,k

∗
t capital

rK,t,r
∗
K,t payoff from renting capital

wt,w
∗
t real wage

qT,t,q
∗
T,t price of installed capital (Tobin’s Q)

lt,l
∗
t labor

mrst,mrs
∗
t marginal rate of substitution

πt,π
∗
t inflation

πT,t,π
∗
T,t inflation of tradable goods

πH,t,π
∗
F,t inflation in tradable sector

πN,t,π
∗
N,t inflation of non-tradable goods

mcH,t,mc
∗
F,t real marginal costs in tradable sector

mcN,t,mc
∗
N,t real marginal costs in non-tradable sector

εaH ,t,ε
∗
aF ,t productivity shock in tradable sector

εaN ,t,ε
∗
aN ,t productivity shock in non-tradable sector

εd,t,ε
∗
d,t preference shock

εl,t,ε
∗
l,t labor supply shock

εg,t,ε
∗
g,t government expenditures shock

εi,t,ε
∗
i,t investment efficiency shock

εm,t,ε
∗
m,t monetary policy shock
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Table 2: Interpretation of Structural Parameters
parameter interpretation domain

n relative size of the domestic economy 〈0, 1〉
β, β∗ discount factor 〈0, 1〉
h, h∗ habit formation in consumption 〈0, 1〉
σ, σ∗ inv. elast. of intertemporal substitution 〈0,∞)
φ, φ∗ inv. elast. of labor supply 〈0,∞)
φH , φF elast. of subst. among tradable goods 〈1,∞)
φN , φ∗N elast. of subst. among non-tradable goods 〈1,∞)
φW , φ∗W elast. of subst. among labor types 〈1,∞)
γc, γ

∗
c share of tradable goods in consumption 〈0, 1〉

γi, γ
∗
i share of tradable goods in investment 〈0, 1〉

α, α∗ share of domestic tradable goods 〈0, 1〉
ω, ω∗ distribution costs 〈0,∞)
τ , τ ∗ capital depreciation rate 〈0, 1〉
S
′′
, S
′′∗ adjustment costs of capital 〈0,∞)

η, η∗ elasticity of output with respect to capital 〈0, 1〉
θH , θ

∗
F Calvo parameter for tradable sector 〈0, 1〉

θN , θ
∗
N Calvo parameter for non-tradable sector 〈0, 1〉

θW , θ
∗
W Calvo parameter for households 〈0, 1〉

δH , δ
∗
F indexation in tradable sector 〈0, 1〉

δN , δ
∗
N indexation in non-tradable sector 〈0, 1〉

δW , δ
∗
W indexation of households 〈0, 1〉

ρi, ρ
∗
i interest rate smoothing 〈0, 1〉

ψπ, ψ
∗
π elasticity of interest rate to inflation 〈0,∞)

ψy, ψ
∗
y elasticity of interest rate to output 〈0,∞)
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Table 3: Interpretation of Parameters related to Shocks
parameter interpretation domain

ρaH , ρ
∗
aF persistence of productivity shocks - tradables 〈0, 1〉

ρaN , ρ
∗
aN persistence of productivity shocks - non-tradables 〈0, 1〉

ρd, ρ
∗
d persistence of preference shocks 〈0, 1〉

ρl, ρ
∗
l persistence of labor supply shocks 〈0, 1〉

ρg, ρ
∗
g persistence of shocks in government expenditures 〈0, 1〉

ρi, ρ
∗
i persistence of shocks in investment efficiency 〈0, 1〉

σaH , σ
∗
aF std. dev. of productivity shocks - tradables 〈0,∞)

σaN , σ
∗
aN std. dev. of productivity shocks - non-tradables 〈0,∞)

σd, σ
∗
d std. dev. of preference shocks 〈0,∞)

σl, σ
∗
l std. dev. of labor supply shocks 〈0,∞)

σg, σ
∗
g std. dev. of shocks in government expenditures 〈0,∞)

σi, σ
∗
i std. dev. of shocks in investment efficiency 〈0,∞)

σm, σ
∗
m std. dev. of monetary shocks 〈0,∞)

coraH ,aF∗ correlation of productivity shocks - tradables 〈−1, 1〉
coraN ,aN∗ correlation of productivity shocks - non-tradables 〈−1, 1〉
cord,d∗ correlation of preference shocks 〈−1, 1〉
corl,l∗ correlation of labor supply shocks 〈−1, 1〉
corg,g∗ correlation of shocks in government expenditures 〈−1, 1〉
cori,i∗ correlation of shocks in investment efficiency 〈−1, 1〉
corm,m∗ correlation of shocks in investment efficiency 〈−1, 1〉
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Appendix - Software

Dynare

The model is estimated using the programme Dynare, version 4.2.4. It is a

free toolbox for Matlab and it was designed for solving and estimating a wide

class of economic models, especially those with rational expectations. It is a

very suitable tool for handling DSGE models. Dynare offers two approaches

to the estimation of the model: (i) maximal likelihood method and (ii) Ran-

dom Walk Chain Metropolis-Hastings algorithm. Beside the estimation, it is

also able to produce many useful statistics, such as convergence diagnostics

of the MH algorithm, checkplots, impulse-response functions, variance de-

composition, shock decomposition, conditional and unconditional forecasts,

etc. All versions of Dynare toolbox and Dynare manuals are available on the

website http://www.dynare.org/.

Demetra

Seasonal adjustment of the HICP and its components was performed in the

Demetra programme. Demetra is a free software designed for seasonal adjust-

ment of time series, developed by researchers from Eurostat and the National

Bank of Belgium. Demetra offers several specifications of TRAMO/SEATS

and X12 methods for seasonal adjustment of time series. It also performs

many statistical tests focusing on evaluation of the quality of seasonal ad-

justment. All versions of the programme Demetra as well as various manuals

and guidelines are available on http://www.cros-portal.eu/page/demetra
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Appendix - Data

Real GDP, consumption and investment are measured as ”Millions of euro,

chain-linked volumes, reference year 2005 (at 2005 exchange rates), Season-

ally adjusted and adjusted data by working days”. Real GDP is given by

Gross domestic product at market prices. Consumption is given by ”House-

hold and NPISH final consumption expenditures”.9 Investment is given by

”Gross fixed capital formation”.

Prices are measured by the ”HICP, Index, 2005=100, All-items HICP”.

Real wage is given by the ”Labour Cost Index - Wages and salaries (total),

Nominal value, Business economy, Index, 2008=100, Seasonally adjusted and

adjusted data by working days”, which is divided by HICP in each period.

Short-term interest rate is given by the ”Money market interest rates, 3-

month rates”.

Internal exchange rate defined as prices of non-tradable goods relative to

prices of tradable goods is calculated from the components of HICP, where

”Services (overall index excluding goods)” and ”Energy” are regarded as non-

tradable goods, while ”Non-energy industrial goods” and ”Food including

alcohol and tobacco” are regarded as tradable goods.

Except for the nominal interest rates, all observed variables are seasonally

adjusted. If it was possible, I used official seasonal adjusted series from the

web database of Eurostat. However, seasonally adjusted versions of HICP

and its components are not available there, therefore I had to adjust them

by myself. I used TRAMO/SEATS algorithm for seasonal adjustment of

9The data series labeled as ”Final consumption expenditures of households” are not
available for the Euro Area 17, which is why I use ”Household and NPISH final consump-
tion expenditures”. However, values of ”Final consumption expenditure of NPISH” are so
negligible that it does not make make any significant difference.
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these time series and took advantage of the Demetra software developed for

seasonal adjustment of time series.

Except for the nominal interest rates, all observed variables are expressed

as demeaned 100*log differences. Nominal interest rates are demeaned and

expressed as quarterly rates per cent. The following formulas show how are

transformed observed variables linked to the model variables.

CZ: EA:

consumption: Cobs
t = ct − ct−1 Cobs∗

t = c∗t − c∗t−1
investment: Iobst = it − it−1 Iobs∗t = i∗t − i∗t−1
GDP: Y obs

t = yt − yt−1 Y obs∗
t = y∗t − y∗t−1

prices: HICP obs
t = πt HICP obs∗

t = π∗t

int. exchange rate: Xobs
t = xt − xt−1 Xobs∗

t = x∗t − x∗t−1
real wage: W obs

t = wt − wt−1 W obs∗
t = w∗t − w∗t−1

interest rate: Robs
t = rt Robs∗

t = r∗t

Figure 1 displays transformed data which enter the estimation.
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Figure 1: Data for Estimation
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Table 4: Priors for Estimated Prameters
parameter prior mean prior std. dev. distribution

h, h∗ 0.7 0.1 Beta
σ, σ∗ 1.0 0.7 Gamma
φ, φ∗ 1.0 0.7 Gamma

S
′′
, S
′′∗ 4.0 1.5 Normal

θH , θ
∗
F 0.7 0.05 Beta

θN , θ
∗
N 0.7 0.05 Beta

θW , θ
∗
W 0.7 0.05 Beta

ρ, ρ∗ 0.7 0.15 Beta
ψπ, ψ

∗
π 1.3 0.15 Gamma

ψy, ψ
∗
y 0.25 0.1 Gamma

ρaH , ρ
∗
aF 0.7 0.1 Beta

ρaN , ρ
∗
aN 0.7 0.1 Beta

ρd, ρ
∗
d 0.7 0.1 Beta

ρl, ρ
∗
l 0.7 0.1 Beta

ρg, ρ
∗
g 0.7 0.1 Beta

ρi, ρ
∗
i 0.7 0.1 Beta

σaH , σ
∗
aF 2 ∞ Inv. Gamma

σaN , σ
∗
aN 2 ∞ Inv. Gamma

σd, σ
∗
d 6 ∞ Inv. Gamma

σl, σ
∗
l 10 ∞ Inv. Gamma

σg, σ
∗
g 3 ∞ Inv. Gamma

σi, σ
∗
i 6 ∞ Inv. Gamma

σm, σ
∗
m 0.3 ∞ Inv. Gamma

coraH ,aF∗ 0 0.4 Normal
coraN ,aN∗ 0 0.4 Normal
cord,d∗ 0 0.4 Normal
corl,l∗ 0 0.4 Normal
corg,g∗ 0 0.4 Normal
cori,i∗ 0 0.4 Normal
corm,m∗ 0 0.4 Normal
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Table 5: Estimated Values
parameter posterior 90% credible posterior 90% credible

mean CZ int. CZ mean EA int. EA

h, h∗ 0.68 0.53 0.83 0.74 0.62 0.86
σ, σ∗ 1.53 0.69 2.39 2.79 1.40 4.14
φ, φ∗ 0.35 0.01 0.69 0.96 0.24 1.67

S
′′
, S
′′∗ 3.75 1.70 5.71 5.12 3.27 6.91

θH , θ
∗
F 0.76 0.70 0.82 0.73 0.68 0.79

θN , θ
∗
N 0.77 0.72 0.82 0.64 0.57 0.70

θW , θ
∗
W 0.71 0.65 0.78 0.79 0.74 0.84

ρ, ρ∗ 0.86 0.84 0.89 0.84 0.81 0.88
ψπ, ψ

∗
π 1.37 1.19 1.56 1.42 1.22 1.62

ψy, ψ
∗
y 0.08 0.05 0.10 0.13 0.08 0.17

ρaH , ρ
∗
aF 0.91 0.88 0.96 0.67 0.53 0.82

ρaN , ρ
∗
aN 0.44 0.33 0.56 0.60 0.47 0.72

ρd, ρ
∗
d 0.74 0.62 0.87 0.72 0.60 0.84

ρl, ρ
∗
l 0.45 0.32 0.59 0.52 0.37 0.68

ρg, ρ
∗
g 0.80 0.73 0.88 0.81 0.74 0.89

ρi, ρ
∗
i 0.63 0.50 0.77 0.74 0.66 0.83

σaH , σ
∗
aF 4.64 2.96 6.32 2.32 1.42 3.21

σaN , σ
∗
aN 8.50 4.58 12.32 2.26 1.44 3.05

σd, σ
∗
d 4.95 2.12 7.87 4.46 2.33 6.58

σl, σ
∗
l 29.81 9.20 51.39 16.41 5.31 27.23

σg, σ
∗
g 3.29 2.72 3.86 1.31 1.11 1.51

σi, σ
∗
i 8.33 3.63 12.90 3.48 2.34 4.57

σm, σ
∗
m 0.07 0.06 0.09 0.09 0.08 0.11

coraH ,aF∗ -0.01 -0.22 0.19
coraN ,aN∗ 0.25 0.05 0.45
cord,d∗ 0.22 0.01 0.43
corl,l∗ 0.10 -0.10 0.31
corg,g∗ 0.14 -0.06 0.35
cori,i∗ 0.18 -0.02 0.38
corm,m∗ 0.67 0.53 0.81
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Appendix - Measures of

Posterior Differences

In this chapter I formally define five criteria for evaluation of differences

between two posterior distributions. The possible values of all five criteria

range from zero to one, where zero represents absolute asymmetry in the

parameter values while unity represents absolute symmetry in the parameter

values.

The benchmark criterion is the overlapping area of normalized posterior

densities, henceforth denoted as area, formally:

area = p(θ|y) ∩ p(θ∗|y),

where θ, θ∗ are two parameters of interest, y denotes the data, and p(θ|y) is

a posterior density of the parameter θ.

The next four criteria use credible intervals in various specifications. The

criterion s 2S is based on two-sided probability band and measures the lowest

level of significance at which two-sided probability bands do not overlap,

formally:

s 2S = minα, w.r.t. 2Sα(θ) ∩ 2Sα(θ∗) = 0,

where 2Sα(θ) denotes two-sided probability interval of the parameter θ on

the significance level α.

Similarly, the criterion s HPD denotes the lowest level of significance at

which highest posterior density intervals do not overlap, formally:

s HPD = minα, w.r.t. HPDα(θ) ∩HPDα(θ∗) = 0,
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where HPDα(θ) denotes highest posterior density interval of the parameter

θ on the significance level α.

The last two criteria are based on point estimates. The criterion s med

denotes the lowest level of significance at which posterior median is out of

two-sided probability bands of its counterpart, formally:

s med = minα, w.r.t. median(p(θ|y)) /∈ 2Sα(θ∗),

where median(p(θ|y)) denotes median of a posterior distribution of the pa-

rameter θ.

Similarly, the criterion s mod denotes the lowest level of significance at

which posterior mode is out of HPD interval bands of its counterpart, for-

mally:

s mod = minα, w.r.t. mode(p(θ|y)) /∈ HPDα(θ∗),

where mode(p(θ|y)) denotes mode of a posterior distribution of the parameter

θ.
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Appendix - MCMC

Convergence Diagnostics

Figures 2 - 20 depict convergence diagnostics of the Metropolis-Hastings al-

gorithm developed by Brooks and Gelman (1998). Each subplot contains a

red and a blue line. Let’s now explain how are these lines constructed, what

they imply, and how they ideally should look like. Let’s denote

• Ψij - the ith draw (out of I, in our case I = 2000000) in the jth sequence

(out of J , in our case J = 4)

• Ψ.j - the mean of jth sequence

• Ψ.. - the mean across all available data.

B̂ defined as

B̂ =
1

J − 1

J∑
j=1

(Ψ.j −Ψ..)
2

is an an estimate of the variance of the mean (σ2/I), and B = B̂I is therefore

an estimate of the variance. Other estimates of the variance are

Ŵ =
1

J

J∑
j=1

1

I

I∑
t=1

(Ψtj −Ψ.j)
2

and

W =
1

J

J∑
j=1

1

I − 1

I∑
t=1

(Ψtj −Ψ.j)
2.
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Ideally, we would like to achieve such a result that the variance between

streams should go to zero, i.e. limI→∞ B̂ → 0, and the variance within

stream should settle down, i.e. limI→∞ Ŵ → constant. If we plot W (red

line) and Ŵ + B̂ (blue line), then the previous proposition about ideal result

for the variance between and within streams can be reformulated so that the

red and blue lines should get close to each other, and that both of them

should remain constant after a certain amount of draws. We can see that in

general the reported plots have the required form.

Figure 2: MCMC Convergence Diagnostics 1
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Figure 3: MCMC Convergence Diagnostics 2
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Figure 4: MCMC Convergence Diagnostics 3
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Figure 5: MCMC Convergence Diagnostics 4
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Figure 6: MCMC Convergence Diagnostics 5
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Figure 7: MCMC Convergence Diagnostics 6
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Figure 8: MCMC Convergence Diagnostics 7
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Figure 9: MCMC Convergence Diagnostics 8
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Figure 10: MCMC Convergence Diagnostics 9
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Figure 11: MCMC Convergence Diagnostics 10
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Figure 12: MCMC Convergence Diagnostics 11

0.5 1 1.5 2

x 10
6

2.5

3

3.5
S_prime (Interval)

0.5 1 1.5 2

x 10
6

1

1.5

2
S_prime (m2)

0.5 1 1.5 2

x 10
6

0

2

4
S_prime (m3)

0.5 1 1.5 2

x 10
6

0

2

4
S_prime_star (Interval)

0.5 1 1.5 2

x 10
6

0

1

2
S_prime_star (m2)

0.5 1 1.5 2

x 10
6

0

2

4
S_prime_star (m3)

0.5 1 1.5 2

x 10
6

0

0.1

0.2
theta_H (Interval)

0.5 1 1.5 2

x 10
6

0

1

2
x 10

−3 theta_H (m2)

0.5 1 1.5 2

x 10
6

0

1

2
x 10

−4 theta_H (m3)

47



Figure 13: MCMC Convergence Diagnostics 12
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Figure 14: MCMC Convergence Diagnostics 13
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Figure 15: MCMC Convergence Diagnostics 14
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Figure 16: MCMC Convergence Diagnostics 15
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Figure 17: MCMC Convergence Diagnostics 16
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Figure 18: MCMC Convergence Diagnostics 17
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Figure 19: MCMC Convergence Diagnostics 18
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Appendix - Forecast

Performance

Quality of the model performance can be evaluated by comparison of the

one-step-ahead forecast of the observed variables with the actual realization

of the observed variables. Figure 21 displays one-step-ahead forecasts (green

line) and the observed values (blue line) for each observed variable.

It is possible to compare the one-step-ahead predictions obtained from

DSGE model with the predictions obtained from VAR1 model and with the

näıve predictions.10. I can calculate the measure of fit of the predictions as

the Root Mean Square Error (RMSE)

RMSE =

√√√√√ T∑
t=2

(xft − xobst )2

T − 1
,

where T is the number of observations, xft is the one-step-ahead forecast for

time t, xobst is the observed value in time t, and RMSE stand for Root Mean

Square Error of the one-step-ahead forecasts.

Table 6 displays calculated RMSE for the DSGE model, VAR1 model,

and for the näıve forecasts. We can see that except for the domestic output

the DSGE model always outperforms the näıve forecasts. We can also see

that except for foreign internal exchange rate the DSGE model is always

outperformed by VAR1 model.

10Näıve prediction means that the prediction is equal to the last observed value
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Figure 21: Observed Variables and One-step-ahead Forecasts, green line -
one-step-ahead forecast, blue line - observations
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Table 6: Forecast Performance of the Observed Variables
RMSE

observable DSGE V AR1 NAIV E

output CZ 0.94 0.52 0.78
output EA 0.52 0.38 0.53
consumption CZ 0.96 0.59 1.14
consumption EA 0.35 0.26 0.39
investment CZ 3.72 2.28 4.64
investment EA 1.22 0.86 1.30
interest rate CZ 0.07 0.05 0.08
interest rate EA 0.09 0.06 0.10
inflation CZ 0.65 0.49 0.68
inflation EA 0.35 0.24 0.36
real wage CZ 1.86 1.29 2.48
real wage EA 0.52 0.32 0.64
int. exchange rate EA 0.71 0.92 0.95
int. exchange rate CZ 1.02 0.50 1.19
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Appendix - Dynare Code

//Kolasa - demeaned log differences

//CZ and EA17, 2Q 2000 - 1Q 2014

clc;

close all;

var //definition of variables

c,c_star, //consumption

x,x_star, //internal terms of trade

s, //external terms of trade

i,i_star, //investment

y_H,y_F_star, //product in tradable sector

y_N,y_N_star, //product in non-tradable sector

y,y_star, //product

r,r_star, //nominal interest rate

q, //real exchange rate

pi,pi_star, //inflation

pi_T,pi_T_star, //inflation of tradable goods

k,k_star, //capital

r_K,r_K_star, //rental rate of capital

w,w_star, //real wages

q_T,q_T_star, //tobin’s Q

l,l_star, //labor

mrs,mrs_star, //marginal rate of substitution

pi_H,pi_F_star, //inflation of raw tradable goods
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mc_H,mc_F_star, //real marginal costs in tradable sector

pi_N,pi_N_star, //inflation of non-tradable goods

mc_N,mc_N_star, //real marginal costs in non-tradable sector

//Observables

y_obs, y_star_obs, //observed output

c_obs, c_star_obs, //observed consumption

i_obs, i_star_obs, //observed investment

r_obs, r_star_obs, //observed int. rate

pi_obs, pi_star_obs, //observed inflation

w_obs, w_star_obs, //observed real wage

x_obs, x_star_obs, //observed int. terms of trade

//AR processes for shocks

epsilon_g,epsilon_g_star, //shock in government expenditures

epsilon_d,epsilon_d_star, //shock in consumption preferences

epsilon_i,epsilon_i_star, //shock in investment efficiency

epsilon_a_H,epsilon_a_F_star, //productivity shock - tradables

epsilon_a_N,epsilon_a_N_star, //productivity shock - nontradables

epsilon_l,epsilon_l_star; //labor supply shock

varexo //shocks - innovations

epsilon_m,epsilon_m_star, //monetary policy shock

mu_g,mu_g_star, //innovation in government expenditures

mu_d,mu_d_star, //innovation in consumption preferences

mu_i,mu_i_star, //innovation in investment efficiency

mu_a_H,mu_a_F_star, //innovation in productivity - tradables

mu_a_N,mu_a_N_star, //innovation in productivity - nontradables

mu_l,mu_l_star; //innovation in labor supply

parameters

beta, beta_star, //discount factor

gamma_c,gamma_c_star, //share of tradable goods in consumption
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gamma_i,gamma_i_star, //share of tradable goods in investment

alpha,alpha_star, //share of domestic tradable goods

omega,omega_star, //share of distribution costs

n, //relative size of economies

h,h_star, //habit formation

sigma,sigma_star, //inv. elasticity of intertemporal subs.

tau,tau_star, //depreciation rate

S_prime,S_prime_star, //adjustment costs

eta,eta_star, //elasticity of output wrt capital

theta_W,theta_W_star, //Calvo parameters for households

delta_W,delta_W_star, //wage indexation

phi_W,phi_W_star, //elasticity of subst. among labor types

phi,phi_star, //inv. elasticity of labor supply

delta_H,delta_F_star, //indexation of tradables

theta_H,theta_F_star, //Calvo parameters for tradables

delta_N,delta_N_star, //indexation of non-tradables

theta_N,theta_N_star, //Calvo parameters for non-tradables

rho,rho_star, //interest rate smoothing

psi_y,psi_y_star, //elasticity of interest rate to output

psi_pi,psi_pi_star, //elast. of interest rate to inflation

//persistence of shocks

rho_a_H, rho_a_F_star, //per. of productivity shock - tradables

rho_a_N, rho_a_N_star, //per. of productivity shock - nontradables

rho_d, rho_d_star, //per. of consumption preference shock

rho_l, rho_l_star, //per. of labor supply shock

rho_g, rho_g_star, //per. of shock in government expenditures

rho_i, rho_i_star, //per. of shock in investment efficiency

//shares of variables in steady-state

ss_C_Y, //share of dom. consumption on dom. output

ss_C_star_Y_star, //share of for. consumption on for. output

ss_I_Y, //share of dom. investment on dom. output
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ss_I_star_Y_star, //share of for. investment on for. output

ss_G_Y, //share of dom. gov. exp. on dom. output

ss_G_star_Y_star, //share of for. gov. exp. on for. output

ss_Y_N_Y, //share of dom. nontradables on dom. output

ss_Y_N_star_Y_star,//share of for. nontradables on for. output

ss_Y_H_Y, //share of dom. tradables on dom. output

ss_Y_F_star_Y_star;//share of for. tradables on for. output

//calibration of the model

//calibrated parameters

beta = 0.9975; beta_star = 0.9975;

gamma_c = 0.5384; gamma_c_star = 0.4953;

gamma_i = 0.5006; gamma_i_star = 0.4257;

alpha = 0.28; alpha_star = 0.989;

//omega = 1; omega_star = 1;

omega = 0; omega_star = 0;

n = 0.0138;

tau = 0.025; tau_star = 0.025;

phi_W = 3; phi_W_star = 3;

eta = 0.4160; eta_star = 0.3618;

delta_H = 0; delta_F_star = 0;

delta_N = 0; delta_N_star = 0;

delta_W = 0; delta_W_star = 0;

//calibrated shares of variables in steady-state

ss_C_Y = 0.4929;

ss_C_star_Y_star = 0.5681;

ss_I_Y = 0.2590;

ss_I_star_Y_star = 0.1999;

ss_G_Y = 1 - ss_C_Y - ss_I_Y;

ss_G_star_Y_star = 1 - ss_C_star_Y_star - ss_I_star_Y_star;
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ss_Y_N_Y = ss_C_Y * (1 + omega - gamma_c)/(1 + omega) +

ss_G_Y + ss_I_Y * (1 - gamma_i);

ss_Y_N_star_Y_star = ss_C_star_Y_star * (1 + omega_star -

gamma_c_star)/(1 + omega_star) +

ss_G_star_Y_star + ss_I_star_Y_star *

(1 - gamma_i_star);

ss_Y_H_Y = 1 - ss_Y_N_Y;

ss_Y_F_star_Y_star = 1 - ss_Y_N_star_Y_star;

model(linear);

// 1.-6. Market Clearing Conditions

y_H = ss_C_Y/ss_Y_H_Y*gamma_c*alpha/(1+omega)*(c+(1-gamma_c)*x+

(1-alpha)*s)+ss_C_star_Y_star/ss_Y_H_Y*(1-n)/n*gamma_c_star

*(1-alpha_star)/(1+omega_star)*(c_star+(1-gamma_c_star)*

x_star+alpha_star*s) + ss_I_Y/ss_Y_H_Y * gamma_i*alpha *

(i + (1-gamma_i)*(1+omega)*x+(1-alpha)*s)+ss_I_star_Y_star/

ss_Y_H_Y*(1-n)/n*gamma_i_star*(1-alpha_star)*(i_star +

(1-gamma_i_star)*(1+omega_star)*x_star + alpha_star*s);

y_F_star = ss_C_star_Y_star/ss_Y_F_star_Y_star*gamma_c_star*

alpha_star/(1+omega_star)*(c_star+(1-gamma_c_star)*x_star -

(1-alpha_star)*s)+ss_C_Y/ss_Y_F_star_Y_star * n/(1-n) *

gamma_c*(1-alpha)/(1+omega)*(c+(1-gamma_c)*x - alpha*s) +

ss_I_star_Y_star/ss_Y_F_star_Y_star*gamma_i_star*alpha_star

*(i_star + (1-gamma_i_star)*(1+omega_star)*x_star -

(1-alpha_star)*s) + ss_I_Y/ss_Y_F_star_Y_star * n/(1-n) *

gamma_i*(1-alpha) * (i + (1-gamma_i)*(1+omega)*x -alpha*s);

y_N = ss_C_Y/ss_Y_N_Y*((1-gamma_c)*(c-gamma_c*x)+gamma_c*omega/

(1+omega)*(c+(1-gamma_c)*x)) + ss_I_Y/ss_Y_N_Y*(1-gamma_i)*

(i-gamma_i*(1+omega)*x) + ss_G_Y/ss_Y_N_Y * epsilon_g;
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y_N_star=ss_C_star_Y_star/ss_Y_N_star_Y_star*((1-gamma_c_star)

*(c_star-gamma_c_star*x_star)+gamma_c_star*omega_star/

(1+omega_star)*(c_star+(1-gamma_c_star)*x_star))+

ss_I_star_Y_star/ss_Y_N_star_Y_star*(1-gamma_i_star)*

(i_star-gamma_i_star*(1+omega_star)*x_star)+

ss_G_star_Y_star/ss_Y_N_star_Y_star * epsilon_g_star;

y = ss_Y_H_Y * y_H + ss_Y_N_Y * y_N;

y_star = ss_Y_F_star_Y_star*y_F_star+

ss_Y_N_star_Y_star*y_N_star;

// 7.-8. Euler Equations

c-h*c(-1) = c(+1) - h*c - (1-h)/sigma * (r - pi(+1)) +

(1-h)/sigma * (epsilon_d - epsilon_d(+1));

c_star-h_star*c_star(-1)=c_star(+1)-h_star*c_star-(1-h_star)/

sigma_star*(r_star - pi_star(+1)) + (1-h_star)/sigma_star *

(epsilon_d_star - epsilon_d_star(+1));

// 9. International Risk Sharing Condition

q = epsilon_d_star - epsilon_d - sigma_star/(1-h_star)*

(c_star - h_star * c_star(-1)) + sigma/(1-h)*(c - h*c(-1));

// 10.-11. Law for Capital Acumulation

k = (1-tau)*k(-1) + tau*(i + epsilon_i);

k_star=(1-tau_star)*k_star(-1)+tau_star*(i_star +

epsilon_i_star);

// 12.-13. Real Marginal Costs

r_K = w + l - k(-1);
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r_K_star = w_star + l_star - k_star(-1);

// 14.-15. Investment Demand

i - i(-1) = beta *(i(+1)-i) + 1/S_prime *(q_T + epsilon_i) -

(gamma_i*(1+omega)-gamma_c)/S_prime * x;

i_star - i_star(-1) = beta_star*(i_star(+1)-i_star)+

1/S_prime_star*(q_T_star+epsilon_i_star)-

(gamma_i_star*(1+omega_star)-gamma_c_star)/

S_prime_star * x_star;

// 16.-17. Price of the Capital

q_T = beta*(1-tau)*q_T(+1)-(r - pi(+1)) +

(1-beta*(1-tau))*r_K(+1);

q_T_star = beta_star *(1-tau_star) * q_T_star(+1) - (r_star -

pi_star(+1)) + (1-beta_star*(1-tau_star))* r_K_star(+1);

// 18.-19. Labor Input

l = eta * (r_K - w) + ss_Y_H_Y * (y_H - epsilon_a_H) +

ss_Y_N_Y * (y_N - epsilon_a_N);

l_star = eta_star * (r_K_star - w_star) + ss_Y_F_star_Y_star *

(y_F_star - epsilon_a_F_star) + ss_Y_N_star_Y_star *

(y_N_star - epsilon_a_N_star);

//20.-21. Real Wage Rate

w-w(-1)=(1-theta_W)*(1-beta*theta_W)/(theta_W*(1+phi_W*phi))*

(mrs-w)+ beta*(w(+1)-w)+beta*(pi(+1)-delta_W*pi) -

(pi - delta_W*pi(-1));

w_star-w_star(-1)=(1-theta_W_star)*(1-beta_star*theta_W_star)/
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(theta_W_star*(1+phi_W_star*phi_star))*(mrs_star-w_star)+

beta_star*(w_star(+1)-w_star)+beta_star*(pi_star(+1)-

delta_W_star*pi_star)-(pi_star-delta_W_star*pi_star(-1));

//22.-23. Marginal Rate of Substitution

mrs = epsilon_l + phi*l - epsilon_d + sigma/(1-h)*(c-h*c(-1));

mrs_star = epsilon_l_star + phi_star*l_star - epsilon_d_star +

sigma_star/(1-h_star)*(c_star - h_star*c_star(-1));

//24.-25. PC for Raw Tradables

pi_H - delta_H*pi_H(-1) = (1-theta_H)*(1-beta*theta_H)/theta_H*

mc_H+beta *(pi_H(+1) - delta_H*pi_H);

pi_F_star - delta_F_star*pi_F_star(-1) = (1-theta_F_star)*

(1-beta_star*theta_F_star)/theta_F_star * mc_F_star +

beta_star *(pi_F_star(+1) - delta_F_star*pi_F_star);

//26.-27. PC for Non-tradables

pi_N - delta_N*pi_N(-1) = (1-theta_N)*(1-beta*theta_N)/theta_N*

mc_N + beta * (pi_N(+1)- delta_N * pi_N);

pi_N_star-delta_N_star*pi_N_star(-1)=(1-theta_N_star)*

(1-beta_star*theta_N_star)/theta_N_star * mc_N_star +

beta_star * (pi_N_star(+1)- delta_N_star * pi_N_star);

//28.-29. Real Marginal Costs in Tradable Sector

mc_H = (1-eta)*w + eta * r_K - epsilon_a_H + (1-alpha)*s +

(1+omega-gamma_c)*x;

mc_F_star=(1-eta_star)*w_star+eta_star*r_K_star-

epsilon_a_F_star-(1-alpha_star)*s+

(1+omega_star-gamma_c_star)*x_star;
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//30.-31. Real Marginal Costs in Non-tradable Sector

mc_N = (1-eta)*w + eta * r_K - epsilon_a_N - gamma_c*x;

mc_N_star = (1-eta_star)*w_star + eta_star * r_K_star -

epsilon_a_N_star - gamma_c_star*x_star;

//32.-33. Internal Exchange Rate

x - x(-1) = pi_N - pi_T;

x_star - x_star(-1) = pi_N_star - pi_T_star;

//34.-35. Inflation of Tradables

pi_T = 1/(1+omega)*(pi_H+(1-alpha)*(s-s(-1))+omega*pi_N);

pi_T_star = 1/(1+omega_star)*(pi_F_star-(1-alpha_star)*

(s - s(-1))+omega_star * pi_N_star);

//36.-37. CPI Inflation

pi = gamma_c * pi_T + (1 - gamma_c) * pi_N;

pi_star = gamma_c_star*pi_T_star + (1-gamma_c_star)*pi_N_star;

//38. Real Exchange Rate

q = (alpha + alpha_star-1)*s + (1 + omega_star - gamma_c_star)*

x_star - (1 + omega - gamma_c) * x;

//39.-40. Monetary Policy Rule

r = rho*r(-1)+(1-rho)*(psi_y*y(+1)+psi_pi*pi(+1))+epsilon_m;

r_star=rho_star*r_star(-1)+(1-rho_star)*(psi_y_star*y_star(+1)+

psi_pi_star * pi_star(+1)) + epsilon_m_star;
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//41.-42. Productivity Shock in Tradable Sector

epsilon_a_H = rho_a_H * epsilon_a_H(-1) + mu_a_H;

epsilon_a_F_star=rho_a_F_star*epsilon_a_F_star(-1)+mu_a_F_star;

//43.-44. Productivity Shock in Non-tradable Sector

epsilon_a_N = rho_a_N * epsilon_a_N(-1) + mu_a_N;

epsilon_a_N_star=rho_a_N_star*epsilon_a_N_star(-1)+mu_a_N_star;

//45.-46. Preference Shock

epsilon_d = rho_d * epsilon_d(-1) + mu_d;

epsilon_d_star=rho_d_star*epsilon_d_star(-1)+mu_d_star;

//47.-48. Labor Supply Shock

epsilon_l = rho_l * epsilon_l(-1) + mu_l;

epsilon_l_star=rho_l_star*epsilon_l_star(-1)+mu_l_star;

//49.-50. Shock in Government Expenditures

epsilon_g = rho_g * epsilon_g(-1) + mu_g;

epsilon_g_star=rho_g_star*epsilon_g_star(-1)+mu_g_star;

//51.-52. Investment Efficiency Shock

epsilon_i = rho_i * epsilon_i(-1) + mu_i;

epsilon_i_star=rho_i_star*epsilon_i_star(-1)+mu_i_star;

//Linking Observables to Model Variables

y_obs = y - y(-1);

y_star_obs = y_star - y_star(-1);
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pi_obs = pi;

pi_star_obs = pi_star;

x_obs = x - x(-1);

x_star_obs = x_star - x_star(-1);

r_obs = r;

r_star_obs = r_star;

w_obs = w - w(-1);

w_star_obs = w_star - w_star(-1);

c_obs = c - c(-1);

c_star_obs = c_star - c_star(-1);

i_obs = i - i(-1);

i_star_obs = i_star - i_star(-1);

end;

//Model is in the gap form, therefore steady state for all

//variables is 0.

initval;

c = 0; c_star = 0;

x = 0; x_star = 0;

s = 0;

i = 0; i_star = 0;

y_H = 0; y_F_star = 0;

y_N = 0; y_N_star = 0;

y = 0; y_star = 0;

r = 0; r_star = 0;

q = 0;

pi = 0; pi_star = 0;
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k = 0; k_star = 0;

r_K = 0; r_K_star = 0;

w = 0; w_star = 0;

q_T = 0; q_T_star = 0;

l = 0; l_star = 0;

mrs = 0; mrs_star = 0;

pi_H = 0; pi_F_star = 0;

mc_H = 0; mc_F_star = 0;

pi_N = 0; pi_N_star = 0;

mc_N = 0; mc_N_star = 0;

epsilon_g = 0; epsilon_g_star = 0;

epsilon_d = 0; epsilon_d_star = 0;

epsilon_i = 0; epsilon_i_star = 0;

epsilon_a_H = 0; epsilon_a_F_star = 0;

epsilon_a_N = 0; epsilon_a_N_star = 0;

epsilon_l = 0; epsilon_l_star = 0;

end;

//Estimated Parameters and their Priors

estimated_params;

h, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.1;

h_star, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.1;

sigma, 1.0, 1E-5, 10, gamma_pdf,1,0.7;

sigma_star, 1.0, 1E-5, 10, gamma_pdf,1,0.7;

phi, 1.0, 1E-5, 10, gamma_pdf,1,0.7;

phi_star, 1.0, 1E-5, 10, gamma_pdf,1,0.7;

S_prime, 4.0, 1E-5, 10, normal_pdf,4,1.5;

S_prime_star, 4.0, 1E-5, 10, normal_pdf,4,1.5;

//delta_H, 0.5, 1E-5, 0.9999, beta_pdf,0.5,0.2;

//delta_F_star, 0.5, 1E-5, 0.9999, beta_pdf,0.5,0.2;

//delta_N, 0.5, 1E-5, 0.9999, beta_pdf,0.5,0.2;

//delta_N_star, 0.5, 1E-5, 0.9999, beta_pdf,0.5,0.2;
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//delta_W, 0.5, 1E-5, 0.9999, beta_pdf,0.5,0.2;

//delta_W_star, 0.5, 1E-5, 0.9999, beta_pdf,0.5,0.2;

theta_H, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.05;

theta_F_star, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.05;

theta_N, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.05;

theta_N_star, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.05;

theta_W, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.05;

theta_W_star, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.05;

rho, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.15;

rho_star, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.15;

psi_y, 0.25, 1E-5, 2, gamma_pdf,0.25,0.1;

psi_y_star, 0.25, 1E-5, 2, gamma_pdf,0.25,0.1;

psi_pi, 1.3, 1E-5, 5, gamma_pdf,1.3,0.15;

psi_pi_star, 1.3, 1E-5, 5, gamma_pdf,1.3,0.15;

rho_a_H, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.1;

rho_a_F_star, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.1;

rho_a_N, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.1;

rho_a_N_star, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.1;

rho_d, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.1;

rho_d_star, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.1;

rho_l, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.1;

rho_l_star, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.1;

rho_g, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.1;

rho_g_star, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.1;

rho_i, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.1;

rho_i_star, 0.7, 1E-5, 0.9999, beta_pdf,0.7,0.1;

stderr mu_a_H, inv_gamma_pdf,2,inf;

stderr mu_a_F_star, inv_gamma_pdf,2,inf;

stderr mu_a_N, inv_gamma_pdf,2,inf;

stderr mu_a_N_star, inv_gamma_pdf,2,inf;
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stderr mu_d, inv_gamma_pdf,6,inf;

stderr mu_d_star, inv_gamma_pdf,6,inf;

stderr mu_l, inv_gamma_pdf,10,inf;

stderr mu_l_star, inv_gamma_pdf,10,inf;

stderr mu_g, inv_gamma_pdf,3,inf;

stderr mu_g_star, inv_gamma_pdf,3,inf;

stderr mu_i, inv_gamma_pdf,6,inf;

stderr mu_i_star, inv_gamma_pdf,6,inf;

stderr epsilon_m, inv_gamma_pdf,0.3,inf;

stderr epsilon_m_star, inv_gamma_pdf,0.3,inf;

corr mu_a_H, mu_a_F_star, 0, -1, 1, normal_pdf,0,0.4;

corr mu_a_N, mu_a_N_star, 0, -1, 1, normal_pdf,0,0.4;

corr mu_d, mu_d_star, 0, -1, 1, normal_pdf,0,0.4;

corr mu_l, mu_l_star, 0, -1, 1, normal_pdf,0,0.4;

corr mu_g, mu_g_star, 0, -1, 1, normal_pdf,0,0.4;

corr mu_i, mu_i_star, 0, -1, 1, normal_pdf,0,0.4;

corr epsilon_m, epsilon_m_star, 0, -1, 1, normal_pdf,0,0.4;

end;

varobs y_obs, y_star_obs, c_obs, c_star_obs, i_obs,

i_star_obs, r_obs, r_star_obs, pi_obs, pi_star_obs,

w_obs, w_star_obs, x_obs, x_star_obs;

estimation(datafile=data_cz_eu_2Q2000_1Q2014, mode_compute=4,

mh_replic=2000000, mh_nblocks=2, mh_drop=0.75,

mh_jscale=0.25, mode_check, smoother, nograph,

bayesian_irf, filtered_vars, forecast=20);
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