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Abstract

Missing covariate values is a common problem in a survival data research. The aim of this study is to compare 
the use of the multiple imputation (MI) and last observation carried forward (LOCF) methods for handling 
missing covariate values in the Cox proportional hazards (PH) regression model. The comparisons between 
the methods are based on simulated data. The missingness mechanism is assumed to be missing at random 
(MAR). Missing covariate values are generated under different missingness rates. The results from both meth-
ods are compared by assessing the bias, efficiency and coverage. The simulation results in general revealed that 
MI is likely to be the best under the MAR mechanism.
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INTRODUCTION
One of the challenges in modeling practice is missing data. A problem occurs when some data on co-
variates are missing in survival analysis, where the Cox proportional-hazards (PH) model (Cox, 1972) 
is usually used for analysis. Covariate observations may be missing for some individuals, for whatever 
reason. An important concept with missing data, specifically where there are multiple covariates with 
missing values, relates to the mechanism of missing data. Rubin (1976, 1987) classified these  mecha-
nisms  into three  basic categories: missing completely at random (MCAR), meaning that the missingness 
process does not depend on the observed responses, missing at random (MAR), when the missingness 
process depends on the observed responses and probably on measured covariates but not on the unob-
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served  responses, and missing not at random (MNAR) which allows the missingness process to depend  
on the unobserved  responses as well as on the observed responses.

Given the problems that can arise in the Cox PH model when there are missing covariate values,  
the following question is forced upon researchers. What methods can be utilized to handle these poten-
tial pitfalls? The goal is to use approaches that better avoid the generation of biased results. There are 
several ways to deal with missing covariate values in Cox PH model. One recommendation is to discard 
subjects with incomplete sequences, and then analyze only the units with complete data. Method that 
uses this solution is called complete case analysis (CC) (Little and Rubin, 1987). However, this method 
has numerous  disadvantages leading to reduction  in the  sample  size, which  reduces  the precision   
of estimates   and  therefore  can  lead  to  biased  results  (Schafer  and Graham, 2002).

In  contrast to  the  CC  analysis,  there  are  other  ways  that can  help  to tackle  the  problem of miss-
ing covariate values in Cox PH model. There are methods that do generate possible values for the miss-
ing covariates. These methods are called imputation methods, where one fills-in (imputes) the missing 
covariate values to obtain a full dataset, and the resultant data are then analyzed by standard statistical 
methods without concern as if the set represented the true and complete dataset (Rubin, 1987; Little  
and Rubin, 1987). This is the key idea behind commonly used procedures for imputation which include, 
simple and multiple imputations (Little and Rubin, 1987). There are different simple imputation methods.  
In this study however we restrict ourselves to outlining one of them, which is called last observation car-
ried forward (LOCF). LOCF substitutes one value for every missing covariate value in the dataset (Little 
and Rubin, 1987, 2002). Under certain restrictive circumstances, LOCF can produce unbiased results.  
In addition, in some situations, LOCF does not produce conservative results. However, this approach can 
still provide conservative results, under some specific circumstances. The method will be readdressed  
in detail in the following section. In contrast to the LOCF method, MI fills in more than one value for 
each missing covariates item and carries out the analysis as if the imputed values were observed data  
to allow for the appropriate evaluation of imputation uncertainty (Rubin, 1987; Little and Rubin, 1987).  
MI was proposed by Rubin (1978) and described in detail by Little and Rubin (1987). Considerable re-
search has focused on MI for handling missing covariate data in Cox PH model (See, Paik, 1997; van 
Buuren et al.1999; Brazi and Wooward, 2004; White and Royston, 2009).

This study deals with the problem of missing covariate values in the Cox regression model. It is devot-
ed to a comparison of two imputation techniques or methods. The methods that were compared include 
multiple imputation (MI) and last observation carried forward (LOCF). The main objective of this paper 
is to study imputation techniques and compare them with others to estimate Cox PH model parameters 
with missing covariates values. The missing data mechanism is assumed to be MAR. The comparisons 
are based on a simulation study. The comparisons are made through the evaluation of bias, efficiency, 
and coverage. The rest of this paper is organized as follow: Section 1 describes the notation and mod-
el assumptions. An overview of methods for analyzing missing covariate values is also given. Section 
2 presents the simulation study scheme including the study design, data generation and the evaluation 
criteria used in the analysis. The results from the simulations of the two methods are presented in section 
3. Finally, a brief discussion and concluding remarks are provided in the last section.

1 METHODS
1.1 Notation and model assumptions
Assume there are n independent individuals.  For each individual, i = 1,..., n.  Let c and T be the cen-
soring and failure, respectively. Now, we assume the hazard for individual i follows a Cox proportional 
hazards regression model:

λ (t | xi) = λ0 (t) exp (β'xi),                 						�       (1)
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where λ0(t) is an unspecified baseline hazard  function, x represent a set of independent covariates that 
may be categorical  or continuous, and β is a p × 1 parameter vector.  In this study however an appli-
cation will be confined to the continuous covariates case (i.e., x are continuous covariates). The vector 
of observed time to follow-up was obtained by T = min (T, c), and failure indicator vector δ by δ = 1  
if T ≤ c and δ = 0 if censored. We suppose that x, T and c are independent. We restrict ourselves to 
consider that the survival time is fully observed, while some of the covariates xi contains missing val-
ues. Now, partition the covariate vector xi into its observed covariates and missing covariates, such that  
xi = (xobs, xmis). Let R be a vector that represents the missing covariate process, with R = 1 if the covari-
ate is observed (i.e. xobs), and Rij = 0 if the covariate is missing (i.e. xmis). When  MAR holds, the missing 
covariate mechanism  is determined by the conditional distribution of R conditional  upon  (Z, δ, xobs), 
which is Bernoulli  with  probability ℏ = P (R = 1 | Z, δ, xobs), where  Z  denotes  the survival  outcome. 
For each individual, let (Zi, δi, xi

obs, xi
mis, Ri) denote i.i.d copies of (Z, δ, xobs, xmis, R). Thus the observed 

covariate data being analyzed are (Zi, δi, xi
obs, xi

mis) if R = 1, and (Zi, δi, xi
obs) if R=0. There are a variety  

of methods that can be used to deal with missing covariate values (xmis).The subsections that follow pro-
vide a review of the methods that are used in this study.

1.2 Multiple imputation (MI)
Following is a brief description of MI and its application. According to Rubin (1987), MI consists  
of three steps. First, each missing value is replaced by M ≥ 2 simulated values.  Each of these sets  
of plausible values can be used to fill-in the missing values and create a completed dataset. This method  
is valid under the MAR mechanism (Little and Rubin, 1987). Further, when MAR holds, for univariate xmis  
and given the observed data (Z, δ, xobs), sets of plausible values for missing observations (xmis) can be created  
to reflect uncertainty about the stochastic non-response model. This can be done using an appro-
priate imputation model P (xmis| Z, δ, xobs). In doing so, SAS PROC MI can be used. PROC MI fills  
in the missing covariate values and therefore the above univariate method can be conducted to each 
missing covariate xmis in turn. This can be achieved using all the imputed values of the other missing 
covariates in case of creating new values of xmis. This process is repeated until a suitable convergence cri-
terion is satisfied. Second, each of the M complete datasets are analyzed using standard statistical meth-
ods, such as Cox proportional regression model. The use of the number of imputations M needs not  
be very large since, in practice, 3-10 imputations often provided satisfactory results (Schafer, 1997; Scha-
fer and Olsen, 1998). Finally, the M results are combined using methods that allow for uncertainty re-
garding the imputation to be taken into account. The steps described earlier are repeated independently  
M times, resulting in , where  is the parameter estimate of interest from imputation m = 1,…, M. 
Steps 1 and 2 are referred to as the imputation task, and step 3 is the estimation task. Finally, we com-
bine the estimates obtained after M imputations. The results of the M separate analyses (e.g. parameter 
estimates) are then combined into a single value as:

      						�       (2)

where  is the parameter estimates of interest from imputation m=1, 2..., M. The variance for these 
estimates is composed of two parts: the between imputation variance and within imputation variance. 
Between imputation variance takes the form:

	�  (3)
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The within imputation variance, U¯, is the mean of estimated variances across the M imputations.  
The total variance for MI is then calculated as:

                 						�       (4)

where:

				�     (5)

The MI inference  assumes  that the  analysis  model  is the  same  as the  model  used  to  impute 
missing values (the  imputation model). Practically, the two models might not be the same (Meng, 1994; 
Schafer, 1997). The quality of the imputation model influences the  quality  of the  analysis model  results   
and  therefore  it is important to  carefully  consider  the  design  of the  imputation model. In this study, 
the imputation model is based on the Cox proportional hazards regression model (1). However, the im-
putation model for missing covariates requires a valid characterization of the conditional distribution  
of missing covariates conditional upon the observed data. This problem of the conditional distribution 
poses a major complication under a Cox PH model. White and Royston (2009) stated that such condition-
al distribution did not have standard and closed forms for Cox PH model.   Thus, one recommendation  
is to use some of the common regression models to approximate the covariate distribution (Lihong  
et al., 2009). Following van Buuren et al. (1999) and White and Royston (2009), we used the linear regres-
sion model to impute the continuous covariate data. The linear regression model provides an appropriate 
imputation model for a continuous xi

mis, that is xmis~β0 + β1 Z + β2 δ + Δ3
T xmis. This model includes  

the following variables as predictors: the survival outcome Z, censoring δ, and the observed covariate 
xobs. This means we used all the available data (including the outcome variable - survival time) to pre-
dict the missing covariate values to make the MAR assumption more plausible as well as to improve  
the accuracy and efficiency of the imputation. The survival time variable was included in the analysis  
as the outcome should be included in the imputation model (Moons et al., 2006). This was done to avoid 
the outcome-covariate association that might be biased toward null using the imputed data (Collins  
et al., 2001).

1.3 Last observation carried forward (LOCF)
The simplest imputation approach is the LOCF method in which every missing covariates value is replaced by 
the last observed covariates value from the subject or time series, i.e. it is a method that assumes that the out-
comes would not have changed from the last observed value. We refer to Siddiqui and Ali (1998) and Satty  
and Mwambi (2012) for more details, and where insightful illustrations of the issues of this method are pro-
vided in Kenward, and Molenberghs (2009). It is a general and flexible technique for handling missing data,  
and can be implemented quickly in several statistical softwares. However, with respect to accurately reproduc-
ing known population results (parameter estimates and standard errors), the LOCF method has been found  
to be inadequate (Schafer and Graham, 2002). It shares with other single imputation methods that it tends  
to create inflated artificial values than truly expected, since imputed values are treated as observed values (Ken-
ward and Molenberghs, 2009). Hence, the variability of the estimators is also underestimated. The problems 
linked with LOCF include: (1) the performance of this method  is poor even when the ignorable missing data  
mechanism  (MCAR or MAR) holds, a situation that limits their  suitability to quite a restricted set of assumptions 
(Allison, 2002); (2) it produces seriously biased results that may or may not be predictable; (3) when using this 
technique, the standard errors and standard deviations tend to be underestimated, and,  therefore,  there is a great-
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er likelihood of committing type-I error (see, Schafer and Graham, 2002). However, despite these shortcomings,  
the LOCF method has been recognized as a popular technique in dealing with missing data for the following 
reasons: its simplicity, in that the method can be quite effective and may be satisfactorily used with small amounts 
of missing data (Unnebrink and Jurgen, 2001), it is easy to carry out in most statistical software packages but  
it has varying details of implementations, and in some applications it makes sense to use this technique. LOCF 
does well when the missingness mechanism is assumed to be MCAR (Unnebrink and Jurgen, 2001). However, 
because such circumstance is rare, Kenward and Molenberghs (2009) advise that one should avoid this method 
whenever possible. In general, LOCF might become attractive under specific circumstances.

2 SIMULATION STUDY
We carried out a simulation study to compare the performance of the MI and LOCF methods. The sim-
ulations were conducted with 100 replications and sample size n = 1 000 for each replication. We simu-
lated the survival time zi from an exponential distribution using the following hazard:

ηz = exp(β0  + β1xi1 + β2 xi2 + β3xi3),            � (6)

where (β0, β1, β2, β3) = (–1.5, 0.5, 1.0, 1.0). That is, the survival time for each individual was distribut-
ed according to equation (1). The covariates x1, x2 and x3 were generated from the multivariate normal 
distributions, i.e., x1~N (10, 0.25), x2~N (10, 0.20) and x3~N (10, 0.20). We assume that zi observations 
are randomly censored with probability 0.20.  Let Ri be a vector that represents  the missing data  pro-
cess, with Rij = 1 if the jth covariate  is observed for individual i, and  Rij = 0 otherwise,  where i = 1, ..., n,  
j = 1, ..., p.  Let, too, Ri2 and Ri3 represent whether xi2 and xi3 are unobserved. We created missing co-
variate mechanism according to the following models:

� (7)

� (8)

where θ denotes  the parameters of the missingness distribution, h(z)  is the observed event times,  
θ2 = (–2, 1.5, 2.5) and θ3 = (–1,  0.5, 0.5, 0.5). We created missing covariate observations under MAR mecha-
nism. Namely, the probability of having a missing covariate values depends on an observed covariate values. 
The MAR mechanism was generated with the fraction of missing covariates set to 10%, 20% and 30%. Now, 
after the missing covariate values had been generated, MI was carried out using SAS PROC MI. With PROC 
MI, we considered the linear regression (Little, 1988) as an imputation model for continuous missing covari-
ates data.  PROC MI was applied to generate M = 5 complete datasets. These 5 imputations are often sufficient 
to obtain satisfactory results (Rubin, 1987; Schafer, 1997). Note that the choice of M =5 was considered ad-
equate and the efficiency of the parameter estimate based on imputation given by (1+v⁄M)-1 here ν is the rate  
of missing data (Rubin, 1987). This formula shows that the relative efficiency of the MI inference is related  
to the missingness rate (ν) in combination with the number of imputations (M). For 10%, 20% and 30% rates   
of missing data  and estimates based  on M = 5 implies we achieve at least 98%, 96% and 94% efficiency, respectively.  
A Cox PH model was then fitted to each completed dataset using SAS procedure PHREG to estimate the overall 
parameters. A Cox PH model that we considered is based on (6). Thereafter, results of the analysis from these  
5 completed (imputed) datasets were combined into a single inference using SAS PROC MIANALYZE.  
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The simpler LOCF technique replaced the missing covariate values by the last available observed values,  
and once the dataset has been completed in this way, it is analyzed as if it were fully observed. LOCF was con-
ducted by using a macro in SAS software.  After applying LOCF, as above introduced, the same model (6)  
as before being fitted is analyzed. In model (6), if xi has missing covariate value, it will be filled  in by the pre-
vious observed covariate value xi-1. Comparisons of MI and LOCF were assessed using criteria recommended  
in Schafer and Graham (2002): (1) Bias of the estimates: the difference between the average of the 1000 coeffi-
cient estimates and the corresponding true coefficient. Thus a better approach that does on the average presents 
the population value with less bias. (2) The efficiency: the variability of the estimates around the true population 
coefficient. It was measured in this study by the average width of the 95% confidence interval. Thus, a wider in-
terval implies a less efficient technique. (3) The coverage of the confidence interval: the percentage of 95% confi-
dence intervals estimates across 1000 replicates. If a method is working well, the actual coverage should be close 
to the nominal rate (95%).

3 RESULTS
The results obtained from a Cox PH  model (6) for the  bias,  efficiency and  coverage of the  MI  
and LOCF methods, under different missing covariate  values rates  are presented  in Tables 1, 2 and 3. 
Note that the largest bias and less efficiency for each given estimate appear in bold.

Under 10% missing covariates rate, the results of MI and LOCF in terms of bias, efficiency and cov-
erage, are displayed in Table 1. By looking at this table we find the following. With respect to biasdness  
of the estimates, the performance of MI was unsurprisingly, better than that for LOCF. However,  
the LOCF based estimates were closer to those based on MI, and only slightly less biased in estimat-
ing x2. Efficiency estimates associated with LOCF were slightly elevated when compared to those with 
MI. The MI method was more efficient in most cases, except for x2.  For  coverage criterion,  according   
to Schafer and Graham  (2002), the performance  of a method  can be regarded to be poor if its coverage 
drops below 90%, and hence leads to substantially increased Type-I error rate.  By this rationale, both 
approaches yielded acceptable coverage of parameters. Their coverage rates were consistently above 90%.

An examination of Table 2, for 20% missing covariate rate, reveals that among the methodolo-
gies examined here, LOCF was notable for consistently producing the most biased estimates vis-a-vis 
those in the MI method. Namely, treating the data with MI appears to have resulted in fairly minor bias. 
MI yielded equally acceptable performance across all covariates. Comparing the efficiency results,  just   
as was the  case in Table  1, efficiency by LOCF  appeared to  be independent of the missing covariate  rates,  

Table 1  Bias, Efficiency and Coverage of MI and LOCF, under 10% missing covariate values

Rate Method Parameter Bias Efficiency Coverage true

MI β1 0.006 1.158 0.971

β2 0.018 1.113 0.974

β3 0.017 1.116 0.967

10%

LOCF β1 0.051 1.176 0.902

β2 0.011 1.112 0.911

β3 0.022 1.171 0.908

Note: MI=multiple imputation; LOCF=last observation carried forward.
Source: Own construction
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Table 2  Bias, Efficiency and Coverage of MI and LOCF, under 20% missing covariate values

Table 3  Bias, Efficiency and Coverage of MI and LOCF, under 30% missing covariate values

Rate Method Parameter Bias Efficiency Coverage true

MI β1 0.011 1.177 0.960

β2 0.064 1.181 0.966

β3 0.051 1.152 0.957

20%

LOCF β1 0.067 1.801 0.891

β2 0.089 1.811 0.881

β3 1.030 1.852 0.889

Note: MI=multiple imputation; LOCF=last observation carried forward.
Source: Own construction 

Rate Method Parameter Bias Efficiency Coverage true

MI β1 0.054 1.801 0.951

β2 0.098 1.826 0.942

β3 0.102 1.900 0.938

30%

LOCF β1 1.124 2.522 0.862

β2 1.021 2.091 0.859

β3 1.205 2.511 0.849

Note: MI=multiple imputation; LOCF=last observation carried forward.
Source: Own construction

meaning the  MI method  yielded more efficient estimates under 20%. MI resulted in smaller estimates than 
estimates of LOCF. Differences in efficiency estimates between the 10% and 20% missing covariate rates were 
more pronounced for LOCF than for MI. Coverage rates obtained by the LOCF method in all cases were un-
satisfactory, as its coverage rates were less than 90%.

Considering the 30% missing covariate values, the results shown in Table 3 reveal that in nearly all cases, 
LOCF consistently produced the most biased estimates. The efficiency performance was acceptable for MI but 
low for all parameters under LOCF. In general, the MI method tends to have the smallest estimates for efficiency 
condition. Thereby, it was more efficient than LOCF. With respect to  coverage  condition  investigated, similar 
to  the  findings obtained under 10% and  20% missing covariate  values, MI produced  uniformly acceptable  
coverage; none was less than  90%. The LOCF’s coverage at 95% was consistently lower than 90%. This coverage 
was indicative a seriously low level of coverage as 90% corresponds to a doubling of the nominal rate of error 
(0.05).  As can be seen in the results, the low coverage rates by LOCF can also be attributed to its large biases.

    Generally  speaking,  across all missing covariate  rates,  the  worst  performance  for analyses  
run with LOCF  occurred  for the highest missing covariate  rate,  and declined in relative  magnitude  
as the missingness rate  decreased.  In other words, when the missing covariate rate decreased to 10%, the results 
from LOCF became nearly closer to those of MI, but for 20% and 30%, it has seriously less efficient estimates.
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DISCUSSIONS AND CONCLUSION
This  study has discussed  the  performance of using  the  MI and  LOCF  methods  for handling miss-
ing covariate  values in survival  analysis. The main objective was to address and compare the use  
of these methods when there are missing covariate values in Cox PH regression model.  The methods 
were compared on simulated data. Missing covariate values were generated under three missingness 
rates. The missing data mechanism was assumed to be MAR. The comparisons between the two meth-
ods were made through the evaluation of bias, efficiency and coverage.  Based on the simulation results, 
we reached the following conclusions:

•	 The results in general revealed that MI is likely to be the best under the MAR mechanism. MI  
	 consistently outperformed LOCF in terms of bias, efficiency and coverage. This advantage for  
	 the MI method is well documented in terms of the MAR mechanism (Little and Rubin, 1987;  
	 Schafer, 1997).

•	 The findings further suggested the inappropriateness of LOCF analysis.  LOCF can lead loss  
	 in power of the covariates and imprecise parameter estimates. To avoid this problem, an application  
	 of MI can be utilized to handle this potential pitfall. Moreover, it appeared that no strong differences  
	 were seen between MI’s results and those for LOCF when the missing data rate was low (10%). This  
	 indicates that the LOCF method can be applied if the proportion of missing covariate values is low.  
	 This LOCF situation is well stated in Unnebrink and Jurgen (2001) and Halabi et al. (2003).  It would  
	 appear that Kenward and Molenberghs’s (2009) recommendation to avoid the LOCF analysis  
	 whenever possible is supported by the current analysis.

•	 As missingness  mechanism  was  simulated to be  MAR,  the current simulation  results  has shown  
	 clearly that the LOCF’s performance was unsatisfactory under  this assumption. This situation can  
	 be justified by some previous studies which show that LOCF is more widely used under MCAR  
	 than under MAR (See, Siddiqui and Ali, 1998; Halabi et al., 2003; Kenward and Molenberghs, 2009).  
	 Therefore, the better ways of dealing with missing covariate values in Cox PH model and the best  
	 method should be dependent on the nature of the missing covariate values mechanism. Conse 
	 quently, one needs to know why are there missing covariate values, and under which mechanism  
	 they are missing.

•	 In conclusion, we recommend that some techniques or methods use different approaches to address  
	 missing covariates in Cox PH model. The  literature presents  various  techniques that can  be used  
	 to deal with  missing covariate  values  in Cox PH  model,  and  these  range from simple classical  
	 ad hoc methods to model-based methods. These methods should be fully understood  
	 and appropriately characterized in relation to missing data and should be theoretically proved before  
	 they are used practically. Additionally, each method is based on a specific missingness mechanism,  
	 but one needs to realize that at the heart of the missingness problem it is impossible to identify  
	 the missing data mechanism.
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