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Abstract

Understanding the dynamics of the daily number of fatal road traffic accidents is important for local authorities, 
police departments, healthcare facilities and insurance companies, enabling them to design preventive measures, 
provide appropriate emergency service and care and reliably estimate traffic accident insurance costs. In the 
present study, using the Fatality Analysis Reporting System provided by the U.S. National Highway Traffic 
Safety Administration, we construct a daily time series of the number of accidents for each state of the United 
States. We model the trend as well as yearly and weekly seasonality present in the time series and provide 
respective trend and seasonality statistics. Differences in accident rates and yearly seasonality between states 
were detected, clustering analysis being applied to identify clusters of states with similar yearly seasonality, 
weekly seasonal patterns for different states proving to be about the same.
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INTRODUCTION
The main aim of this paper is to examine the daily number of motor vehicle accidents on the roads 
of the Unites States that involve at least one fatality. Special focus will be given on the characteristics 
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of the trend and seasonal components, the yearly seasonal component in particular. The findings of 
the study can be useful for local authorities, police departments and hospitals as well as for insurance 
companies.

Levine et al. (1995) investigated changes in the daily number of motor vehicle accidents for the City 
and County of Honolulu in 1990. Their results suggest that more accidents occur during Fridays and 
Saturdays and during minor holidays. They also identified weather conditions as a relevant factor influencing 
the number of accidents. Nofal and Saeed (1997) examined monthly variations of the number of road 
accidents in Riyadh city from 1989 through 1993. Among others, they observed seasonal variations in the 
number of accidents, the accidents being maximal during the summer season. Edwards (1996) identified 
an increasing pattern in the number of accidents throughout the calendar year for England and Wales 
in the period from 1980 to 1990, the first quarter of the year having the lowest level and the last quarter 
the highest level of accidents. Jones et al. (2008) studied variations in mortality and morbidity from road 
traffic accidents in England and Wales from 1995 through 2000. Using a geographical approach and 
district-level data with various explanatory variables (population numbers and characteristics, traffic 
exposure, road length, curvature and junction density, land use, elevation, hilliness, etc.), they identified 
risk factors that predicted variations in mortality and morbidity.

In our analysis, we construct daily time series of the number of motor vehicle road accidents involving 
at least one fatality for each state of the United States from 2006 to 2016. We model the trend and seasonal 
components of the time series for each state separately and provide summary statistics. We also explore 
geographical associations.

The data used in the analysis are presented in Section 1. The model for the number of accidents is 
introduced in Section 2. The results of the analysis are provided in Section 3. The last section concludes.

1 DATA 
Fatality Analysis Reporting System (FARS) data provided free of charge by the U.S. National Highway 
Traffic Safety Administration (NHTSA)6 have been used. The FARS database offers detailed information 
on each motor vehicle road accident in the United States which involves at least one fatality. FARS stores  
each accident as an individual data record with a unique identification number, revealing the details of 
the accident such as the date and time, geographic location, number of fatalities, weather conditions, etc. 

We have removed duplicate records using the identification number of each accident. Yearly, monthly 
and daily averages and corresponding rates per 1 000 population (in parentheses) for the entire United 
States7 are as follows: 32 664.64 (0.1058), 2 722.97 (0.0088) and 89.49 (0.0003).

Then we constructed a daily time series of number of accidents for each U.S. state from the beginning 
of 2006 to the end of 2016, leap days having been removed to simplify the analysis of yearly seasonality (see 
below). As a result, we have obtained a time series consisting of eleven times 365 (i.e. 4015) observations 
for each of the 50 states of the U.S.A. and the District of Columbia.8

Average annual accident rates per 1 000 population for each state9 in the 2006–2016 period are presented 
in Figure 1. The average rate per state is 0.12, the lowest (0.050) and highest (0.21) ones occurring in the 
District of Columbia and in Mississippi, respectively. The Pacific coast and north-eastern states generally 
report lower rates per 1 000 population compared to the rest of the United States.

6 https://www-fars.nhtsa.dot.gov.
7 The number of inhabitants was obtained from the 2010 United States Census at: https://www.census.gov.
8 Although the federal District of Columbia (Washington, D.C.) is not a state, it is considered as such (i.e. “the 51st state”) 

in the present analysis.
9 Data on the population of each state were obtained from the 2010 United States Census, available at: https:// 

www.census.gov.
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2 MODEL FOR THE NUMBER OF ACCIDENTS
Let {Xt} be a time series of the number of daily road accidents of length N = 4 015. Since the number of 
accidents is a non-negative integer, it can be assumed – providing that the number of accidents is not 
large enough – that Xt (i.e. the number of accidents at a specific time t) is non-Gaussian. Thus, it may be 
useful to consider some distribution for Xt which relaxes the normality assumption. Specifically, we can 
assume that Xt has a density belonging to the exponential family of distributions (Nelder and Baker, 1972; 
McCullagh and Nelder, 1989):

                                                                                (1)

where Wt is the canonical parameter, kt the dispersion parameter and a(.) and c(.) denote some functions. 
The expected value of a random variable from the exponential family of distributions is equal to the first 
derivative of a(Wt) with respect to Wt, while the variance is equal to kt times the second derivative 
of a(Wt) with respect to Wt. Further, the second derivative of a(Wt) with respect to Wt expressed 
as a function of the expected value is called the variance function and captures the relationship between 
the variance of the random variable and its mean. 

To be more specific, let us assume that Xt is a Poisson random variable with parameter t. Such 
a distribution is a special case of an exponential family distribution with Wt = log t, a(Wt) = eWt and 
kt = 1. Consequently, we get the following results: the expected value of Xt is given as μt = E(Xt) = 
a(1) (Wt) = t , its variance as D(Xt) = kt a(2)(Wt) = t and the variance function as V(μt) = μt.

We further assume that {Xt: t = 1, …, N} is a sequence of N independent Poisson random variables 
with parameters t (t = 1, …, N), the means μt (t = 1, …, N) of the variables being given as:

                                                                        (2)

                                                                        (3)

Source: Own construction

Figure 1   Average yearly number of accidents per 1 000 population, excluding results for Hawaii (0.078) 
and Alaska (0.088)
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The model of Formula 2 can be considered as a generalized linear model (GLM), see McCullagh and 
Nelder (1989). In generalized linear models a monotonic function of the expected value, called a link 
function, rather than the expected value itself is modeled as a linear combination of regressors. This linear 
combination is called a linear predictor.

A possible choice (but not the only one) of the link function is the canonical link function (μt) 
which satisfies (1)(μt) =      . For the case of Poisson distribution this implies that the canonical link 
function is a logarithmic function. Such a canonical link function is also used on the left-hand side 
of Formula 2.

The linear predictor on the right-hand side has two parts: a trend component of the linear predictor 
(Tt) and a seasonal component of the linear predictor (St). The two parts will be specified in Sections 2.1 
and 2.2. The trend and seasonal component in the mean daily number of accidents are given as {exp(Tt)} 
and {exp(St)}, the model for the mean daily number of accidents being multiplicative (see Formula 3).

McCullagh and Nelder (1989) or Dobson and Barnett (2008) present further details on generalized 
linear models which also include the estimation of the models.

In the generalized linear model we assumed that the Poisson random variables {Xt: t = 1,…, N} are 
independent. This assumption was checked during our analysis and was found to be reasonably satisfied 
(see Section 3 for details).

If the assumption of the independence of the N Poisson random variables {Xt: t = 1,…, N} was not 
satisfied, the generalized linear model could be extended to capture the dependence among the variables 
by assuming Poisson generalized ARMA models (GARMA) which can be formulated as:

                                                                                                    , (4)

where μt is the expected value of {Xt} conditional on all the information available at time t, Rt = Tt + St, 
and ϕj, for j = 1, 2, ..., p, and θj  , for j = 1, 2, ..., q are parameters and X't is a modified time series defined 
as X't = max(Xt , c), where c

∈   (0, 1) (Dunsmuir and Scott, 2015; De Andrade, 2016).

2.1 Trend and yearly seasonal component representation
Four different models for {Tt} will be examined: no trend (i.e. intercept only), linear, quadratic and cubic 
deterministic trend.

{St} will be decomposed into two parts {S1t} and {S2t}, the former representing yearly and the latter 
weekly seasonality. Specifically, we write:

                                                            (5)

Yearly seasonality has a long seasonal period, namely L = 365. On the other hand, the period of weekly 
seasonality cannot be considered as a long seasonal period since it is equal to 7.

Yearly seasonality can be modeled using cubic splines. Specifically, let us assume the following cubic 
spline function (Ramsay and Silverman, 2002; or Ramsay and Silverman, 2005) defined in the interval 
[0, L], where L = 365,

                                                             (6)

where 0 ≤ t* ≤ L is a real-valued variable, (.)+ denotes the positive part of the expression in brackets, β0, β1, 
β2, β3 and θk, for k = 1, 2, ..., K, are parameters and ξk, for k = 1, 2, …, K, called the knots, are integer- or 
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real-valued constants which satisfy 0 ≤ ξ1 < ξ2 < . . . < ξK < L. C(t*) is a piecewise cubic polynomial and 
is continuous in the interval [0, L]. At the knots, the first and second derivatives of C(t*) exist, whereas 
the third ones do not.

Further, the following constraints are applied to the function C(t*):

C(0) = C(L),
C(0)(1)+ = C(L)(1)–,
C(0)(2)+ = C(L)(2)–,                                                                                    (7)
C(0)(3)+ = C(L)(3)–,

where C(0)(1)+, C(0)(2)+, C(0)(3)+, are the first, second and third right derivatives at the point 0, and C(L)(1)–, 
C(L)(2)–, C(L)(3)–, the three left ones at the point L. The five constraints of Formula 7 effectively reduce the 
number of the cubic spline parameters by 5, ensuring that both ends of the function “connect smoothly” 
and that the seasonal deviations sum up to zero.

Even though we do not provide an explicit formula for the constrained cubic spline since it would 
be too complex, it is important to emphasize that the constrained cubic spline can be written as a linear 
combination of K – 1 basis functions. An illustrative example is presented in Figure 2.

Figure 2   An example of a constrained cubic spline function (solid black curve) with four knots in the interval 
[0, 365]. The position of the knots is denoted by four gray vertical lines. The spline function is obtained 
as a linear combination of three basis functions denoted by the gray solid, gray dotted and gray dashed 
curve. The weights of the linear combination are chosen as 1 (solid), –0.5 (dotted) and 2 (dashed).

Source: Own construction
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If the constrained cubic spline function is periodically extended with a period equal to L, we obtain 
a periodic cubic spline function. If the periodic cubic spline function is sampled at discrete values 
1, 2, …, N, it can serve as a representation of the yearly seasonal component {S1,t}. 

Generally, a large number of knots K leads to a less-biased and high-variance estimate of the yearly 
seasonal pattern, whereas a low number of knots results in a highly biased and low-variance estimate. 
The time positioning of knots along the calendar year, though subjective to some extent, is also crucial. 
More densely positioned knots in a given period of the year lead to a less-biased but more variable estimate 
of the cycle in that period. The positioning of the knots in our paper is described in the next paragraph 
and the selection of the K value is given in Section 2.3. 
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In total, eleven different models for the yearly seasonal cycle will be examined in our analysis: no yearly 
seasonal cycle and ten models based on periodic cubic splines differing in the number of parameters 
(K – 1): 3, 5, 7, 9, 11, 13, 15, 17, 20 and 30. The knots will be placed equidistantly throughout the year so 
that the distance between two neighboring knots is constant, the first knot being placed at the beginning 
of the calendar year. The equidistant placement of the knots is a common choice which often works well 
(see e.g. Ramsay and Silverman, 2002; or Ramsay and Silverman, 2005). An alternative to the equidistant 
placement of the knots is to place more knots in those regions where the estimated function exhibits 
the most complex variations (see e.g. Ramsay and Silverman, 2005) – this approach will not be used 
in our analysis. 

2.2 Weekly seasonal component representation
Weekly seasonality will be modeled as follows:

                                                                                           (8)

where ψm , for m = 1, 2, ..., 6, are parameters and {Zm,t: t = 1, ..., N}, for m = 1, 2, ..., 6, are effect coding 
variables.

In total, two different models for weekly seasonality will be considered: a model with no weekly 
seasonality and the model of Formula 8.

2.3 Best model selection
88 different models will be examined for each time series, differing in the number of parameters used 
for the deterministic trend (four alternatives), yearly (eleven alternatives) and weekly seasonality (two 
alternatives) in the linear predictor. The model with the lowest value of Akaike information criterion 
(AIC) among these 88 models will be selected as the best, AIC being defined as:

                                                              (9)

where P is the number of parameters to be estimated and  ̂is the natural logarithm of the maximized 
likelihood function.

The best model selected by AIC for each state was further checked whether it conforms to the 
assumptions of the GLM approach (see Section 3).

R software (R Core Team, 2017) has been employed in the analysis. Namely, the glm() function 
from the R stats package has been used to perform Poisson regression. The part of the model matrix 
corresponding to yearly seasonality has been created making use of the pbs() function from the pbs R 
package (Wang, 2013).

3 RESULTS
As explained above, 88 different models have been considered for each of the 51 time series, Table 1 
displaying the frequencies of the models that were selected as the most appropriate.

Let {  : t = 1, ..., N} be the fitted values from the best model and

                                                                               (10)
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3.1 Examining the trend component
It follows from Table 1 that a quadratic (three-parameter) trend is often the best choice for {Tt}. If {�tT } 
is an estimate of {Tt}, then the estimated trend in the mean daily number of accidents is {exp �tT }. In Figure 3, 
the relative change of {exp �tT } (in percentage terms) is indicated for each state with respect to the beginning 
of the year 2006. There has been a decrease in the number of accidents in most states since 2006 – the 
least accidents occurring around the year 2012 –, followed by a slight increase in most states.

The relative change of the level of {exp �tT } from the beginning of 2006 to the end of 2016 is shown 
in percentage points in Figure 4, the average relative change being –16.4 per cent, the minimum and 
maximum reaching –53.6 and 16.0 per cent in South Dakota and New Hampshire, respectively. There is 
no clear geographical pattern in the relative change of {exp �tT }.

10 To check the results, we have also performed GARMA modeling, using the glarma() function from the glarma R package 
(Dunsmuir and Scott, 2015), with p = 1, q = 2 and c = 0.01 (default value). The estimated shapes of seasonal cycles were 
highly similar to those obtained from GLM modeling.

Table 1  Frequencies of the models selected for the 51 time series (WS stands for “weekly seasonality”)

Source: Own construction

Number of parameters of {Tt} Row sums
1 2 3 4

0 no WS 0 0 0 1 1

WS 0 0 1 0 1

3 no WS 0 0 0 0 0

WS 0 2 8 3 13

5 no WS 0 0 1 0 1

WS 0 2 9 7 18

7 no WS 0 0 0 0 0

WS 0 0 5 2 7

9 no WS 0 0 0 0 0

WS 0 0 1 2 3

11 no WS 0 0 0 0 0

WS 0 0 1 1 2

13 no WS 0 0 0 0 0

WS 0 0 1 0 1

15 no WS 0 0 0 0 0

WS 0 0 0 1 1

17 no WS 0 0 0 0 0

WS 0 0 0 1 1

20 no WS 0 0 0 0 0

WS 0 0 1 0 1

30 no WS 0 0 0 0 0

WS 0 0 0 1 1

Column sums 0 4 28 19

N
um

be
r o

f p
ar

am
et

er
s 

of
 {S

1, t
}

the corresponding Pearson residuals. Based on Cameron and Trivedi (2013, Sec. 7.3.2) we have used the 
sample autocorrelation function of Pearson residuals from the best model as well as the related significance 
tests (test for autocorrelation at an individual lag based on a test statistic following normal distribution 
and portmanteau test based on the Box-Pierce test statistic, see Cameron and Trivedi, 2013, Sec. 7.3.2) 
to assess the assumption of independence of {Xt: t = 1,…, N}. This assumption seems to be reasonably 
satisfied for all the 51 time series.10
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Source: Own construction

Source: Own construction

Figure 3   Relative change (in percentage terms) of {exp Tt} with respect to the beginning of the year 2006 
for the 51 states. North Dakota is depicted in thin dashed black, the other states in gray. The geometric 
mean of the corresponding growth rates (translated into a relative change) is represented by the solid 
black curve, the two dotted black curves denoting the distance of one geometric standard deviation 
from the geometric mean.

Figure 4   Relative change (in percentage terms) of {exp Tt} from the beginning of 2006 to the end of 2016, excluding 
results for Hawaii (–29.7) and Alaska (–2.4)

3.2 Examining the yearly seasonal component
Table 1 shows that yearly seasonality is present in most of the time series, the most common number of 
parameters for { 1,tS } being five. The only two states that do not exhibit yearly seasonality are Hawaii and 
the District of Columbia. If {�1,tS } is the estimate of { 1,tS }, then the estimated yearly multiplicative seasonal 
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component in the mean daily number of accidents is {exp �1,tS }. There is a relatively wide diversity among 
the 51 states in the temporal variability of {exp �1,tS } along the year, some of them showing minor and 
others considerable variability of the seasonal component.11 

We conduct cluster analysis and form four groups of states with similar yearly seasonalities. Specifically, 
agglomerative hierarchical clustering with the Euclidean distance and complete linkage (see Everitt and 
Hothorn, 2011) is used,12 with each state represented by 365 values13 {�1,tS  : t = 1, ..., 365}. The clustering 
dendrogram is presented in Figure 5, with the four clusters denoted by gray rectangles.14 The clusters 
are also shown in Figures 6 and 7, yearly seasonal cycles {exp �1,tS } being illustrated separately for the 
respective clusters in the latter figure. 

It is obvious that the clusters are closely related to the geographical location of each state. The first 
cluster comprises the Sun Belt southern states such as Florida, Texas and California. Yearly seasonality is 
not too variable in these states. The geometric mean of geometric standard deviations of {exp �1,tS } is 1.05 
in the whole cluster, the geometric standard deviation for a single state being defined as:

                                            ,                                    (11)

where �1,mS , for m = 1, ..., 365, is the estimated yearly seasonal component of the linear predictor for 
the mth day of the year.

11 Kirkwood (1979) argues that the geometric mean and geometric standard deviation are reasonable measures of location 
and spread for the variables which are subject to multiplicative rather than additive variations. Consequently, we use 
the geometric mean and geometric standard deviation as the measures of location and spread of multiplicative seasonal 
patterns {exp  �1,tS } throughout the text.

12 We use dist(), hclust() and cutree() functions from the R base package to perform the analysis in R.
13 Since the Euclidean distance is applied, it seems more sensible to do the clustering on {�1,tS } rather than {exp  �1,tS }.
14 Increasing the number of clusters above five does not lead to a pronounced decrease in the within-cluster sum of squares, 

while decreasing the number of clusters below three results in a marked increase in the within-cluster sum of squares. 
Thus, the choice of three, four or five clusters seems to be reasonable. In this analysis, we have opted for four clusters.
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Source: Own construction

Figure 5   Hierarchical clustering dendrogram. The four clusters are denoted by the gray rectangles.
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The second cluster consists of the Mountain West states, e.g. Idaho, Montana and Wyoming. The yearly 
seasonal cycle exhibits significant variations, the geometric mean of geometric standard deviations 
of {exp �1,tS } being 1.30.

Source: Own construction

Source: Own construction

Figure 6   Members of the four clusters from hierarchical clustering, except Hawaii (part of the 1st cluster) 
and Alaska (2nd cluster)
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Figure 7   Estimated multiplicative yearly seasonal components. The bottom plot (the entire U.S.A.) represents 
the geometric mean of the 51 seasonal components (thick solid black curve) and the distance of one 
geometric standard deviation from the geometric mean (two thick dotted curves). Individual seasonal 
components are presented in the upper plots being grouped into four separate clusters. The geometric 
mean of each cluster is shown by the thick solid black curve, except for cluster 4 which consists of only 
one state (South Dakota). Each cluster has its own y axis on the right-hand side of the plot.
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Source: Own construction

Figure 9   Distribution of the maxima (left plot) and minima (right plot) of the yearly multiplicative seasonal 
component among the states along the year. Percentage of states having a maximum or minimum 
in a given month is presented on the vertical axis. Hawaii and the District of Columbia are excluded from 
the plot since they do not exhibit yearly seasonality.

Figure 8   Geometric standard deviation of the multiplicative yearly seasonal cycle for each state, except 
Alaska (1.345) and Hawaii (1). The light and dark colors indicate large and small standard deviations, 
respectively.

Source: Own construction

The remaining states, except for South Dakota, form the third cluster. They report medium yearly 
seasonal variability and the geometric mean of geometric standard deviations of {exp �1,tS } is 1.14.

South Dakota is the only member of the fourth cluster. It displays extreme yearly seasonal variations, 
the geometric standard deviation of {exp �1,tS } being 1.42.

σд is plotted for individual states in Figure 8. A clear geographical pattern emerges, related to the 
above clusters.
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DISCUSSION AND CONCLUSIONS
We have constructed daily time series of the number of motor vehicle road accidents with at least one 
fatality for the individual states of the U.S.A. and the District of Columbia in the period from the beginning 
of 2006 to the end of 2016. Poisson generalized linear models were used to examine the trend component 
as well as yearly and weekly seasonal cycles in the time series. Given the long period analyzed, the yearly 
seasonal component was represented by periodic cubic splines.

Summary statistics on annual averages, the trend component, and yearly and weekly seasonality are 
presented. 

Source: Own construction

Figure 10   Multiplicative weekly seasonal component for the 51 states. Alaska and the District of Columbia are 
represented by the thin dotted gray line, Rhode Island by the thin dashed gray curve and the other 
states by the gray curves. The solid black curve is the geometric mean of individual curves, the two 
dotted black curves showing the distance of one geometric standard deviation from the geometric 
mean.

In general, accidents tend to occur more frequently during summer and autumn months as shown 
in Figures 7 and 9. The latter figure illustrates the distribution of the maxima (left plot) and minima (right 
plot) of the yearly multiplicative seasonal cycle among the 51 states along the year, the maxima occurring 
mostly in the summer (July and August) and the minima during winter months (January, February, March).

3.3 Examining the weekly seasonal component
It follows from Table 1 that weekly seasonality is often present in the time series. The only two states that 
do not exhibit weekly seasonality are Alaska and the District of Columbia. If {�2,tS } is an estimate of { 2,tS }, 
then the estimated multiplicative weekly seasonal component in the mean daily number of accidents 
is {exp �2,tS }.

Multiplicative weekly seasonal components for the 51 states plotted in Figure 10 are largely similar, 
except for Alaska and the District of Columbia (see the thin dotted gray line in the figure), which do 
not show a weekly seasonal pattern, and Rhode Island (thin dashed gray curve), whose pattern slightly 
differs from that of the other states. The typical pattern has a minimum on Tuesdays and a maximum 
on Saturdays.
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Source: Own construction

Figure 11   Geometric standard deviation of the yearly seasonal cycle plotted against the average annual 
temperature (in degrees Celsius) for the 51 states

15 Average annual temperatures were obtained from the National Centers for Environmental Information website at: 
https://www.ncdc.noaa.gov.

Despite having no intention of exploring causal mechanisms by which the fluctuations of the number 
of traffic accidents occur, we have some ideas to think about in this context. Specifically, the differences 
in annual accident rates per 1 000 population between the U.S. states (see Section 1) can be explained 
by different numbers of motor vehicles and diverse travel motivations and behavior, the above factors 
resulting in different distances covered by car in a year per 1 000 population. Also, the road network 
range and quality as well as decisions of the local authorities regarding transport can help to explain the 
differences (see Peden et al., 2004).

A similar pattern of trend components in the states observed in Section 3.1 suggests that the long-run 
dynamics of the number of accidents may be governed by some common factors (such as the improved 
vehicle safety features, the U.S. economic performance and gasoline prices). Longthorne et al. 
(2010) argue that the decline in the number of accidents is largely due to a decrease in the number 
of young drivers’ car crashes, implying that it might be caused by rising unemployment among 
the youth. It is obvious that yearly seasonal patterns are related to the geographical location of the 
states (Section 3.2). Moreover, Figure 11 reveals the relationship between the geometric standard  
deviation of the multiplicative yearly seasonal pattern {exp 

�
1,tS } and the average annual temperature  

of each state.15 The states with higher average temperatures tend to have less variable yearly seasonal 
patterns, whereas those with lower average temperatures report higher variability. This may indicate 
lower winter traffic volumes (compared to summer ones) in the states with low annual average 
temperatures since some local roadways are not safe enough to drive on. Summer driving, on the other 
hand, seems to be more comfortable, which is reflected in higher traffic density levels and accident 
rates.
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The similarity between weekly seasonal patterns (Section 3.3) is explicable by comparable lifestyles 
in different states, people traveling more by car to see relatives and friends or go on trips, particularly 
on weekends.

In further research, we will focus on a causal explanation for different accident rates.
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