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Abstract

The economic returns to schooling is a fundamental parameter of interest in many different areas of economics 
and public policy. The most common technique for estimating this parameter is based on the assumption that 
the ‘true’ coefficient of education in the earnings equation is constant across individuals. However, this may 
not often be wholly true and returns to schooling estimates may be biased and inconsistent. The objective 
of this study was to estimate the returns to schooling as a random coefficient and obtain accurate and reliable 
estimates that will be useful for policy recommendations. The restricted maximum likelihood (REML) method 
was used to estimate the parameters of a random coefficient model using data from a 2007/2008 Ghanaian 
twins’ survey. The results revealed that the REML economic returns to schooling in three selected cities were 
between 7% and 9%. Significant (p<0.05) variances around the mean returns to schooling implied that returns 
to schooling might vary among individuals due to unobserved factors.
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Introduction
The relationship between schooling and earnings is of key importance to the research community and 
policymakers in both the developed and developing countries. This is because studies have consistently 
confirmed that people with higher level of education earn more money, experience less unemployment, 
and work in more prestigious occupations than their less-educated counterparts (Card, 1999; Patrinos, 
2006). An important parameter of interest frequently estimated in the schooling-earnings relationship 
is the economic returns to schooling. It is an indicator of schooling impact on levels of output per worker 
and a determinant of relative wages (Kaboski, 2007). In addition, studies of returns to schooling along 
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with other research act as a guide for public policy decisions about the organization and financing of edu-
cation reforms (Psacharopolous and Patrinos, 2004). In the empirical literature, the standard approach  
used in estimating the economic returns to schooling is the ordinary least squares (OLS) method 
on a simple Mincer type earnings function.

Two major issues associated with the estimation of the returns to schooling using the OLS method 
have been pointed out by (Card, 1999; Pfeiffer and Pohlmeier, 2012) and others. Firstly, an assumption  
made in most empirical studies when estimating the standard Mincerian wage equation states that 
the return to schooling is homogenous, (i.e., constant across individuals) making the OLS returns to 
schooling a fixed coefficient (i.e., a single parameter in the population). However, the return of an addi- 
tional year of schooling may vary across schooling levels and across individuals of the same schooling 
level due to differences in observable factors (e.g. family background, school quality, level of schooling,  
etc.) as well as unobservable factors (e.g. cognitive and non-cognitive skills, peer group and network 
effects), Pfeiffer and Pohlmeier (2012). In such a situation, it may be better to regard the returns to  
schooling as a random coefficient subject to random variation (Hildreth and Houck, 1968). If this random 
coefficient is correlated with the schooling variable or the additive error term in the earnings equation, 
then standard OLS estimates of returns to schooling will be biased and inconsistent. Secondly, in the 
presence of nested and hierarchically structured data, such as individuals or twins within families, OLS 
techniques violate the assumption of independence of errors leading to imprecise parameter estimates 
and loss of statistical power, and subsequently increases the likelihood of rejecting a true null hypothesis 
(Raudenbush and Bryk, 2002).

Consequently, given these limitations an OLS estimation of schooling on earnings will fail to accu-
rately identify the schooling earnings relationship and its usefulness with respect to policy recommen-
dations will be limited. A number of economists have used the instrumental variable (IV) approach 
(Heckman, 1998) to address the inefficiency of OLS when returns to schooling vary across individuals. 
However, as noted by (Card, 2001) even the IV technique based on ideal instruments will produce es-
timates that are weighted averages of the returns to schooling for each individual with higher weight 
placed on those individuals most likely to have been affected by the instrument of choice. As a result, 
the IV will be a biased estimate of both the average return to schooling and the return to schooling 
of the group affected by the instrument if returns to schooling varies across individuals. They both con-
cluded that in several instances the IV estimates are not precise and cannot effectively estimate policy 
relevant parameters.

The dominant approach to the random coefficient model estimate in recent years is based on the prin-
ciple of maximum likelihood (ML) estimation (Bickel, 2007). The reason being that when the assumptions 
of independence of observations and residuals are violated as in the case of varying parameter estimates, 
maximum likelihood estimators provide parameter estimates that are relatively consistent, asymptoti-
cally normal and efficient (Card, 2001). However, the ML estimator of variance components in a linear 
model can be biased downwards because it does not adjust for the degrees of freedom lost by estimating 
the fixed regression coefficients. Patterson & Thompson (1971) introduced the restricted maximum likeli- 
hood (REML) estimator to address the limitations of the ML. REML in contrast to ML, adjusts for the 
degrees of freedom lost due to the estimation of the fixed effects parameters by maximizing the likeli-
hood of linearly independent residual error contrasts to obtain unbiased estimates (Laird and Ware, 1982; 
Lindstrom and Bates, 1988). REML provides unbiased regression coefficients even with small samples by 
considering the number of parameters used in model estimation (Nunnally and Bernstein, 1994). Con-
sistent with this trend, Ashenfelter and Krueger (1994) identified an income premium related to higher 
educational attainment by using data from an Ohio Twinsburg survey. Their REML returns to schooling 
estimate was about 16%. Mazumder (2004) also analyzed data from the 1979 National Longitudinal  
Survey (NLSY79) in the United States using the restricted maximum likelihood (REML) method. 
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His findings indicate that more than half the variation in the log of wages among men is due to differences  
in family and community background. Sadeq (2014) investigated differences in wage penalty between  
formal and informal employment using labor force survey data from three countries. His REML rate  
of return to required years of education for formal employees ranged from 7.8% to 8.4%. Likewise, 
Anger and Schnitzlein (2013) analyzed data from the German Socio-Economic Panel Study (SOEP), using 
a Restricted Maximum Likelihood (REML) model. They find substantial influence of family background 
on the skills of both brothers and sisters. Their sibling correlations of the personality traits range from 
0.24 to 0.59 indicating that even for the lowest estimate, one fourth of the variance or inequality can be 
attributed to factors shared by siblings. Sibling correlations in cognitive skills were also higher than 0.50, 
indicating that more than half of the inequality in earnings could be explained by family characteristics.

The objectives of this paper are to (a) to estimate the return to schooling as a random regression coef-
ficient, (b) to determine the influence of individual and family background characteristics on the returns 
to schooling and to (c) to decompose the variance around the mean return into family  heterogeneity, 
individual heterogeneity and residual error.

1 MATERIALS AND METHODS
1.1 Data 
There is no national twins database in Ghana and therefore primary data was collected by a team of five 
interviewers during a twins’ survey in December 2007 and January 2008 in three cities in Ghana, namely 
Accra, Kumasi and Takoradi. Questionnaires were administered through face-to-face personal interviews 
to gainfully employed adult twins aged between 18 and 65. Twins were identified through various chan-
nels including twins registered at the twin’s clubs, various work places, markets, shops, colleagues, friends, 
relatives, and households. In Kumasi 404 respondents were identified, whereas in Accra and Takoradi 
the total of 96 respondents were identified. Altogether, 500 respondents were identified. 50% of twins 
identified were randomly selected and interviewed giving a total of 250 respondents made up of 125 twin 
pairs. Out of the 250 respondents, 144 individuals were dizygotic (DZ) twins and 106 were monozygotic  
(MZ) twins. This data set provides a unique and rich source of information on the socio-economic 
characteristics (age, gender, marital status, earnings, education, family background characteristics such as 
sibling education, father’s and mother’s education etc.) of twins’ in Ghana. Data analysis was performed 
using three samples (Pooled, Monozygotic and Dizygotic) in order to identify the comparative roles of 
genetics and family background as mediating influences in the returns to schooling.
 
1.2 Modeling Framework 
The modeling technique used for estimating the return to schooling as a random coefficient was the hie- 
rarchical linear Model (HLM) by Raudenbush and Bryk, (2002). The multilevel characteristic of HLM 
captured the inherently hierarchical nature of the family-twins dataset (i.e. individuals/twins observations 
(level 1) nested within families (level 2)). The mean effect of education on earnings and the variance in 
returns around this mean were represented as fixed and random effects respectively. Observable diffe- 
rences in returns across individuals were controlled by the influence of siblings and family background 
characteristics (e.g. parental education) on earnings. Family-specific random returns were also estimated 
as deviations around the sample average return to schooling. An individual-specific random intercept 
was also introduced to control the unobserved heterogeneity which is usually interpreted as the return to 
an individual’s innate ability or skill. The proportion of the total variation in earnings that lies “between” 
individuals in terms of an intra-class correlation (ICC or ρ) was also calculated to describe how strongly 
twins in the same family resemble each other. 

As a first step in the HLM analysis of the returns to schooling, the ICC was determined using 
the unconditional or null model. The null model (contains no explanatory variables) expresses 
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the individual-level earnings Yij for the ith sibling/twin in the jth family (i = 1, 2; j = 1, 2, k) by combining 
two linked models: one at the individual level (level 1) and another at the family level (level 2) as:

Level-1 (sibling/twins-level) model is:

                        , where 
                         

.                           � (1.1)

Level-2 (family-level) model is:

                         , where
                           

.           � (1.2)

The level-1 and level-2 equations are combined into a single model equation and represented as:

                                , where                           ,                         ,� (1.3)

                                         ,                              , 			    

where Yij refers to earnings for the ith sibling/twin in the jth family, β0 is the overall mean, μ0j is the ran-
dom effect for the jth family and eij is an individual-specific random error component with  population 
variance σ 2e . The intra-class correlation ρ is then specified as:

                        ,                     � (2)

where σ 2μ  0 captures the variance in annual earnings that is due to differences between families while 
the σ 2e  captures the variance in annual earnings within families.

Secondly, a two-level hierarchical linear model which involves the estimation of fixed effects, random 
returns to schooling coefficients, the variance components and individual and family variables to explain 
differences in returns to schooling across individuals can be written as:

Level 1:

                                            , where                         ,        � (3.1)

Level 2:

                                             ,      � (3.2)

                                           ,                        � (3.3)

where (γ00 and γ10)  are the intercepts or overall means for (β0j 
and β1j ) from the second-level models, 

(γ01 and γ11) are the regression coefficients (slopes) from the second-level models, (μ0j and μ1j) are 
the random effects or residuals for (β0j 

and β1j), X and Z are matrices containing explanatory variables.   
X represents an explanatory variable for individual (twin) i nested in level 2 (family) unit j, and Z repre-
sents an explanatory variable for level 2 (family) unit j.

Substituting Equations (3.2) and (3.3) into Equation (3.1) gives the combined model as: 

                                                                                              ,   � (3.4)
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where                          and                                                 = T,

where                         ,                         and                                 .

Yij is a function of the mean intercept (γ00), the regression coefficient or mean slope (γ10) for the first 
explanatory variable (e.g., education) at level 1, plus two random parameters (variation of the intercepts 
(μ0j) and variation of the slopes (μ1j) and the residual variation (eij). Xij and Zj are matrices containing in-
dividual and family level variables (e.g., education, age, marital status, parental education, etc.). 

In the two-level HLM, the (γʹs) are the fixed effects parameter estimates that are assumed to be con-
stant across individuals from Equations (3.2) and (3.3), β0j 

and β1j are the random effects parameter es-
timates that vary across individuals from Equation (3.1). (eij) is the variance of the first-level residuals 
from Equation (3.1) and (μ0j and μ1j) are the variances of the second-level residuals.

The variance around the mean returns to schooling is decomposed into three components as:

                                  =                            ,                              ,                             ,

where μ0j 
is family heterogeneity (i.e., variance component common to all siblings in family j), 

μ1j is individual or sibling heterogeneity (i.e., variance component unique to individual i in family j) and 
eij represents residual error due to measurement errors and other transient errors which are associated 
with earnings and age-related earnings differences.

1.3 Parameter Estimation
The two-level hierarchical model involves the estimation of three types of parameters, namely the fixed 
effects, random effects or random coefficients and the variance-covariance components. The restricted 
maximum likelihood (REML) estimator (Patterson and Thompson, 1971) was used to estimate the para- 
meters. With the REML method only the variance components are included in the likelihood function 
and the regression coefficients are estimated in a second estimation step. The fixed effects are represented 
by (γ00, γ01, γ10 and γ11) in Equation (3.4) and were estimated by the generalized Least Squares (GLS), 
Laird and Ware, (1982) given variance-covariance estimates calculated by the REML method (Rauden-
bush, Bryk, Cheong and Congdon, 2001, p.7). The random coefficients are represented by (β0j 

and β1j) in 
Equations (3.2) and (3.3) and were estimated by the empirical Bayes approach or the best linear unbiased 
prediction (BLUP) method. The variance-covariance components were estimated by REML method 
and they include (1) the covariance between level-2 error terms (i.e., cov(μ0j, μ1j = τ01), (2) the variance 
in the level-1 error term (i.e.,var(eij) = σ 2e ) and (3) the variance in the level-2 error terms (i.e., var(μ0j, μ1j) 
= τ00 and τ11, respectively). The three parameters in the HLM were estimated using the Statistical Analysis 
System (SAS) model notation of the two-level HLM in Equation (3.4) specified as follows:

                                           ,	 j=1, 2,J,� (4)

where Aj = XjZj, Aj and Xj, and are known design matrices, Zj is the level 2 covariate, γ is a vector of fixed 
effects, μj is a vector of random effects and ej is a vector of random errors. The random effects and the 
random errors are normally distributed with:
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The fixed effects (γ’s) were estimated using the GLS. The GLS estimator which provides weighted es-
timates of the second-level regression coefficients can be written as: 

                                          , where                                          .� (5.1)

The variance of    is given as:

                                   .� (5.2)

The random effects (μ ’s) were estimated using shrinkage estimators, namely the empirical Bayes 
method or the best linear unbiased prediction (BLUP) according to the equation below:

                                     .� (5.3)

The variance-covariance components (σ 2e  , τ00  τ01 and τ11) were estimated using the restricted maxi-
mum likelihood (REML) method. REML estimates of the variance-covariance components (G and R) 
were calculated by maximizing the REML log-likelihood function:

                                                                                                                                                 ,� (6)

where:                                                and                       .

The maximization was carried out using a ridge-stabilized Newton-Raphson algorithm (Lindstrom 
and Bates, 1988). Tests of hypotheses about the fixed and random effects and the variance-covariance 
components were carried out using an approximate t-statistics, Wald Z test and chi-square statistics 
(Polit, 1996; Agresti, 1990; Verbeke and Molenbergs, 2000). Statistical analyses were conducted using 
SAS Version 9.1.3 PROC MIXED with REML option.

2 RESULTS
Overall, female twins slightly outnumbered male twins by about 2.4% (Table 1). MZ twins earned more 
on average than DZ twins and fathers acquired more education than mothers (Table 2). 
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Table 1  Total Number of Monozygotic (MZ) and Dizygotic (DZ) Twin Respondents in the Three Survey Areas

Source: GTS authors’ calculation

Area
MZ DZ

Total
Male Female Male Female

Kumasi 42 36 60 64 202

Takoradi 4 2 4 6 16

Accra 8 14 4 6 32

Total 54 52 68 76 250
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2.1 The null model or unconditional model
Table 3 represents the parameter estimates and standard errors for the null model of Equation (1.3). 
Results of this model reveal that the fixed effects intercept terms are approximately 7.18, 7.37 and 7.05  
for pooled, MZ and DZ twins, respectively. The variance of the twins-level residual errors denoted 
by σ 2e  is estimated as 0.1544. Likewise, the variance of the family-level residual effect denoted by σ 2μ   
is estimated as 0.5714. All the parameter estimates are positive and the Wald Z-test indicates that they are 
also significant. The proportion of variance (i.e., the intra-class correlation coefficient (ICC)) in annual 
earnings that occurs between families for the pooled sample of twins is calculated as p = 0.5714/(0.5714 + 
0.1544) = 0.787. This estimate which is very high tells us that about 80% of the total variation in earnings 
of twins can be accounted for by family background effect. Moreover, the ICC estimates (0.88 and 0.70) 
for MZ and DZ twins respectively (Table 3) indicate that about 12% and 30% of the variances in the two 
models are attributable to individual traits of MZ twins and DZ twins, respectively. These estimates show 
the extent to which observations are related within each family and therefore suggest that MZ twins are 
more closely genetically related than DZ twins. Overall, the correlations describe the proportion of variance 
associated with differences between families and indicate that family background effects contribute 
a sizable percentage of the variation in the returns to schooling for twins than individual effects. 

Furthermore, the results of the ICC (which are greater than 10% of the total variance in the model) 
indicate that the HLM is an appropriate model for the estimation of the regression relationship that varies 
by family using multiple level data (siblings/twins nested within families, Table 3). The residual variance 
for all three samples are significant (p<0.01) and therefore supports the alternative hypothesis that aver-
age annual earnings may vary across individuals or twins with the same level of schooling. 

Table 2  Descriptive Statistics – Means and Standard Errors

Note: Standard errors in parentheses below means.
Source: GTS authors’ calculation

Variable Pooled sample Monozygotic twins Dizygotic twins

Own education (years)
12.576 14.009 11.521

(0.343) (0.535) (0.427)

Co-twins education (years)
12.692 13.840 11.847

(0.345) (0.550) (0.429)

Male (proportion)
0.488 0.509 0.472

(0.032 (0.049) (0.042)

Age (years)
32.816 31.887 33.500

(0.649) (0.905) (0.907)

Married (proportion)
0.432 0.321 0.514

(0.031) (0.046) (0.042)

Mother’s education
5.776 6.189 5.472

(0.408) (0.638) (0.530)

Father’s education
8.288 9.557 7.354

(0.462) (0.723) (0.591)

Log of annual income
GH¢7.184 GH¢7.368 GH¢7.049

(0.054) (0.084) (0.068)

Sample size 250 106 144
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The results of a second model which includes some demographic characteristics such as number of 
years spent schooling, age, gender, marital status, father’s education and mother’s education as explana-
tory variables are presented in Table 4. Average annual earnings (5.68, 5.02 and 5.88) for the pooled, 
MZ and DZ twins’ samples respectively, are highly significant (p<0.01), suggesting that the effects of 
education on earnings vary from one family to another and among individuals. The findings also indi-
cate that data used is dominated by a hierarchical structure, which may affect both the intercepts and the 
slopes (returns to education) of earnings functions. The results further indicate that expected earnings 
for the three data sets were similar irrespective of the type of model (null or random coefficient) used. 
However, the expected earnings of the different groups were higher for the null model compared to the 
second model. Apparently, accounting for the variation in sibling earnings by including demographic 
variables decreases expected earnings (intercepts) by about 1.5 and 1.2 points for MZ and DZ twins 
respectively when compared to the expected earnings of the null model which did not have any covari-
ates. This suggests that demographic characteristics explain a proportion of the variation in annual ear- 
nings. The effect of an additional year spent schooling on individual earnings ranged from 7% to 9% for 
the three data samples (Table 4) and it differed significantly from zero (i.e., p<0.01). Returns to schooling 
estimates for MZ twins were lower than that of both the pooled and DZ twins. This may indicate the exis-
tence of some upward bias for MZ twins REML estimates due to omitted unobserved characteristics and 
also confirms the fact that failure to take account of unobserved heterogeneity leads to biased estimates 
on the returns to schooling. It may also suggest that high-ability MZ twins find it easier to acquire more 
education. Father’s education significantly (p<0.05) affected REML returns to schooling for MZ twins, 
whiles mother’s education had a significant impact on  REML returns to schooling for DZ twins. The re-
turns to schooling estimates (Pooled = –0.15, MZ = –0.10 and DZ = –0.16) for gender measured by the 
dummy male were negative for all three samples and significant at the 5% level for the pooled and DZ 
twins’ samples. This inverse relationship implies negative average returns to education for male twins and 
suggests that an additional year of schooling has a higher pay-off for females than for males. This means 
that while females have lower wage levels than men, they have higher average returns to education. The 
effect of age on earnings for every additional life year was significant (p<0.05) for MZ twins but insignifi-
cant (p>0.05) for DZ twins. This finding may be associated with age being a better proxy for actual work  

Table 3  Results from the Null Hierarchical Linear Model (HLM)

Note: * = p < .05, ** = p < .01. Standard errors in parentheses below means.
Source: GTS authors’ calculation

Fixed Effects Pooled MZ twins DZ twins

Family intercept, γ00 

7.1846** 7.3686**      7.0492**

(0.0720) (0.1158) (0.0889)

Random Effects  Variance components

Family mean, τ00 
0.5714** 0.6639** 0.4687**

(0.0830) (0.1396) (0.0969)

Residual effect, σ2
ε

0.1544** 0.0925** 0.2000**

(0.0195) (0.0180) (0.0333)

ICC, ρ 0.7873 0.8777 0.7009

Model Fit

–2 Res log likelihood 510.9 194.7 304.1

AICc 514.9 198.7 308.1

N 250 106 144
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experience for MZ twins than it is for DZ twins. Moreover, the MZ twins sample are on average younger 
than the DZ twins and therefore a decline in earnings could come about at older ages. The effect of the 
proportion of those who are married on earnings was negative and not significant (p>0.05) for all three 
data samples, indicating that being married does not guarantee an individual an increase in earnings.

2.2 Variation around the mean returns to schooling
Comparison of the variance components corresponding to the random intercepts (family-level variance) 
between the null and second models (Tables 3 and 4) shows that family-level variance components for 
MZ twins decreased by 70% in the second model (Table 4). This indicates that individual and family 
characteristics explain a larger portion of the differences in the returns to schooling for MZ twins and 
that an earnings-education model that does not take into account these characteristics may overestimate 
the returns to schooling. Although, the family level variance for MZ twins in the second model is not 
significantly different from zero (p>0.05), the variance around the mean returns to schooling is, how-
ever, significant (p<0.05), Table 4. 

Table 4  Results of the Hierarchical linear Model (HLM) including Covariates

Note: * = p < .05, *** = p < .001. Standard errors in parentheses below means.
Source: GTS authors’ calculation

Fixed Effects Pooled MZ twins DZ twins

Family intercept, γ00 

5.6777**      5.0160**      5.8847**

(0.2372) (0.2999) (0.3070)

Schooling (years) slope, γ10

0.0878**    0.06801**     0.0886**

 (0.0113) (0.0173) (0.0133)

Age (years)
0.0141* 0.0399** 0.0085

(0.0061) (0.0084) (0.0076)

Gender
–0.1488**     –0.1022 –0.1643**

(0.0570) (0.1315) (0.0587)

Married
–0.0038 –0.0286 –0.0024

(0.0896) (0.1368) (0.1034)

Father’s schooling (years)
0.0061 0.0323**     –0.02051

(0.0112) (0.0111) (0.0169)

Mother’s schooling (years)
0.0137 –0.0093 0.0430*

(0.0130) (0.0132) (0.0191)

Random Effects  Variance Components

Family variance, τ00 0.7652**      0.1835 0.9521**

(0.2105) (0.2632) (0.2884)

Schooling slope, τ11 0.0031** 0.0031* 0.0028**

(0.0012) (0.0019) (0.0011)

Residual effect, σ2
ε 0.07456**     0.0827**    0.0698**

(0.0102)  (0.0163) (0.0135)

Model Fit

–2 Res log likelihood 398.1 164.8 242.0

AICc 406.1 172.8 250.0

N 250 106 144
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The variance components for the returns to schooling coefficient in the second model is denoted 
by τ11 and estimated as 0.0031 and 0.0028 with standard errors of 0.0019 and 0.0011 for the MZ and 
DZ twins’ respectively (Table 4). These variances are higher than their standard errors suggesting that 
the second model picks up most of the variance in the returns to schooling that exist across families, 
though this variation is still significant (p<0.05). The significant variances of the regression slopes for 
the MZ and DZ twins data imply that returns to schooling varies across families and the values of 0.07 
and 0.09 are just the expected returns across families (Table 4). This indicates that there could be some  
level of unobserved differences between MZ twins which may be attributed to individual characte- 
ristics. Similar random coefficient variance estimates are also associated with the returns to schooling 
for the pooled and DZ twins datasets and are significantly different from zero (p<0.05) using the Wald 
Z-test. This shows that the returns to schooling for these twins differ more than one could reasonably 
attribute to chance. REML returns to schooling results from Table 4 show significant (p<0.05) variation 
in the estimated intercepts and slope coefficients and therefore suggest that there exists heterogeneity 
in the returns to schooling. Since the random effects for the MZ and DZ twins are assumed to follow 
a normal distribution, about 67% of the returns to schooling regression coefficients for the MZ twins 
are expected to lie between an interval of (0.0123 and 0.1237) and about 95% are predicted to lie be-
tween (0.0411 and 0.1771). Similarly, about 67% of the returns to schooling regression coefficients for 
DZ twins are expected to lie between (0.0357 and 0.1415) and about 95% are predicted to lie between 
(–0.0151 and 0.1923). Thus, a return to schooling corresponding to the lower interval would indicate 
that if an employee is a DZ twin, annual family earnings is decreased by approximately 1.5% when com-
pared with returns to schooling for non-DZ twins. Likewise the returns to schooling that corresponds  
to the upper limit of the interval would mean that annual family earnings for a DZ twin employee 
increased by 19% when compared with returns to schooling for non-DZ twins. A returns to schooling cor-
responding to the lower interval would indicate that if an employee is a MZ twin, annual family earnings 
are decreased by less than 5% when compared with returns to schooling for non-MZ twins. Likewise 
the returns to schooling that correspond to the upper limit of the interval would mean that annual 
family earnings for a MZ twin employee increased by 18% when compared with returns to schooling for 
non-MZ twins. 

Furthermore, the Wald-Z test pointed out that the residual components which measured the varia-
tion not accounted for in the hierarchical linear models for both MZ and DZ twins in the null and 
second models were statistically significant (p<0.05). Interestingly, the residual variance associated with 
the returns to years of schooling for MZ twins in the second model decreased by about 11% whiles that 
of DZ twins decreased by about 65% (Table 4) when compared to the null model residual variances. This 
suggests that there is still some unobserved variation in returns to schooling for both MZ and DZ twins 
which could be attributable to measurement error in reported schooling levels and possible individual 
differences in inherent ability, among other reasons. Additionally, the significant REML residual varia-
tion is essentially due to the randomness of observed rates of returns to schooling and is an indication 
that returns to additional schooling varies randomly across individuals due to factors unknown to both 
the researcher and the individual at the time of their decisions. 

According to the smaller-is-better rule for the information criteria, Model 2 has a smaller (AICc) (406.1) 
and a lower Restricted log likelihood (–2RLL) (398.1) compared to (AICc – 514.9) and (–2RLL – 510.9) 
of the null model and is therefore considered the best model. The probability chi-square of the difference 
in the log likelihood test of the models for the MZ, DZ and Pooled data sets, revealed that there were sig-
nificant (p<0.01) differences between the null and the second model with explanatory variables (Table 5). 
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 3 DISCUSSION
Returns to schooling have been estimated as fixed coefficients using OLS methods in a number 
of labor economics studies. However, the OLS estimates may be inconsistent and biased when the returns 
to schooling vary across individuals as a result of observable factors as well as unobservable factors. Card, 
(1995) observed in a number of studies that different individuals acquire different returns to schooling 
and the same individual’s returns to schooling vary with the level and type of schooling. In such situa-
tions the assumptions of non-varying slopes and intercepts, and uncorrelated residuals in standard OLS 
estimates are violated. Maximum likelihood estimators address the violation of the assumption of fixed 
coefficients by permitting intercepts and slopes to vary from one group to another. Moreover, in real life 
situations data collected are mostly of a hierarchical nature and statistical measures must be taken to ex-
ploit the opportunities offered by multilevel data structures.  In order to obtain efficient and consistent 
estimates of the returns to schooling for a set of fully employed MZ and DZ twins, we used the REML 
estimation procedure in a hierarchical linear model to estimate the returns to schooling. Three types 
of parameters, namely the fixed effects, random effects and the variance-covariance components were 
estimated. REML estimated an unbiased variance around the mean returns to schooling parameters by 
accounting for the degrees of freedom lost by the estimation of the mean returns to schooling.

The estimated rates of return to schooling for the pooled, MZ and DZ twins ranged between 7% and 
9%. These rates of returns to schooling are comparable to that of Conneely and Uusitalo (1999) who 
estimated a random coefficient model using Finish data that allowed for endogenous schooling and ability 
bias with an estimated maximum likelihood mean return to schooling of 6%.  Similarly, the REML 
returns to schooling estimates of Sadeq (2014) using a hierarchical linear model varied between 7.8% and 
8.4%. Moreover, Ashenfelter and Krueger (1994) found a higher restricted maximum likelihood estimate 
(16%) of the returns to schooling. Altogether, these results provide consistent and efficient estimates 
of the returns to schooling across individuals. The positive and somewhat large returns to schooling 
in the hierarchical linear model also indicate the importance of accounting for unmeasured ability and 
motivational factors that affect the returns to schooling. 

Interestingly, MZ twins’ earnings were significantly affected by fathers’ education whiles mothers’ 
education significantly influenced DZ twins’ earnings. Thus, MZ twins’ had better educated fathers who 
increased their children’s education through transmission of innate ability, whereas DZ twins’ had bet-
ter educated mothers who raised their children’s education by enhancing the “family learning environ-
ment.” The effect of family background characteristics, i.e., parental education on returns to education 
is an important topic in the economics literature (Griliches, 1979). Part of this importance stems from  
the strong correlation between the educational attainment of parents and children, which may contribute 
to the transmission of socioeconomic status and inequality across generations. Parental education was 
found to positively and significantly affect the earnings of both MZ and DZ twins. Similarly, Anger and 
Schnitzlein (2013) concluded that family background variables play an important role in generating  
variation in the return to schooling. However, using twins data, Ashenfelter and Rouse (1998) are 

Table 5  Testing the significance of 2 Hierarchical linear Models for MZ and DZ Twins

Source: GTS authors’ calculation

Item Difference in Log likelihood 
(–2LL) Difference in df p>chi-square

MZ – Model 1&2 29.9 2 3.21586E-07

DZ – Model 1&2 62.1 2 3.27459E-14

Pooled – Model 1&2 112.8 2 3.20473E-25
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of the view that the effects of family background (and ability) on returns are small. Altonji and 
Dunn (1996) also measured the effects of family background on the returns to schooling and found 
a positive though small effect of family background on returns in their preferred fixed effects speci- 
fication. 

Observed rates of returns to education may vary across individuals within the same educational 
group because of risk and unobserved heterogeneity. This study therefore added individual and family 
factors to the HLM to account for some of the variation in returns to schooling. The variance around 
the mean returns to schooling was decomposed into family heterogeneity, individual heterogeneity and 
risk. Significant (p<0.05) individual differences in the variance around the mean returns to schooling 
were observed for both MZ and DZ twins. However, in contrast to DZ twins, there were no significant 
unobservable family differences around the mean returns for MZ twins. This confirms the fact that MZ 
twins have similar ability and similar family background. This is consistent with findings by Ashenfelter 
and Krueger (1994) and Yew (2000) who did not find any statistically significant (i.e., p<0.05) sources 
of heterogeneity in the returns to schooling for MZ twins. These MZ twins’ results suggest that indivi- 
duals from higher ability families receive a lower marginal benefit from their human capital investment.  
On the contrary, significant family heterogeneity for DZ twins indicate that able individuals may attain 
more schooling because of higher marginal benefits to each additional year of education. Similarly, Bing-
ley et al. (2005) exploited panel data using mixed model to show that there were significant variances to 
the returns to schooling estimates and found that individual variance in returns is smaller for MZ twins 
than for DZ twins. Correspondingly, Chen (2002) used US panel data (NLSY) to separate the variation 
in the returns to college into heterogeneity and risk components, and found that almost all the variation 
in returns is accounted for by the heterogeneity component. 

Investing in education is always associated with some amount of risk (Hartog, 2011). This risk is the 
variation in the returns to education due to factors unobserved by the individual. The residual variance 
estimate which represents individual earnings risk was about 8% for MZ twins and 7% for DZ twins. 
These estimates are in line with some of the existing literature. Koop and Tobias (2004) apply the model 
to the NLSY and find a mean return of 12% with a dispersion of 7%. Chen (2002) also finds that the dis-
persion in returns to a US college education is 7%. Thus, the risk is quite large, even though we have al-
lowed for differences by observable characteristics and it implies that a large number of the twins data set 
show very low returns to education. Interestingly, the residual variance for both MZ and DZ twins were 
statistically significant suggesting that the earnings risk associated with an additional year of schooling 
is important and therefore needs policy interventions. This earnings risk may result from lack of know- 
ledge about individual ability and unanticipated changes in market conditions.

CONCLUSION
In this paper we have examined the restricted maximum likelihood (REML) estimation of a random 
coefficient model for earnings and its potential to provide unbiased returns to schooling regression coef-
ficients. Results from our statistical and econometric analysis show that the mean return to schooling in 
the three selected cities in Ghana is between 7% and 9% which is comparable with worldwide estimates. 
Using the REML approach, the study also observed that there were significant variations around the mean  
returns to schooling across individuals which may partly be due to unobservable differences in indivi- 
dual ability and family background characteristics. The study further observed that family background  
characteristics (i.e. parental education) positively and significantly affect the earnings of both MZ and 
DZ twins. This is an indication that family background characteristics may play an important role in the 
relationship between earnings and schooling for genetically identical and similar twins. Consequently,  
the REML approach provides a robust alternative to the ordinary least squares method when returns 
to schooling vary across individuals and when data used is hierarchically structured. REML approach  
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to the estimation of the returns to schooling offers a measure of the true effect of schooling on earnings  
which has important implications for policy formulation and decision making within the education 
sector especially for developing countries. 
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