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Abstract

The k-Nearest Neighbour method is a popular nonparametric technique for solving classification and regression 
problems without having to make potentially restrictive a priori assumptions about the functional form  
of the statistical relationship under investigation. The purpose of this paper was to demonstrate that the scope 
of this method can be extended in a way that enables the simultaneous consideration of continuous, ordered 
discrete, and unordered discrete explanatory variables. An exemplary application to a publicly available dataset 
demonstrated the feasibility of the proposed approach.
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INTRODUCTION
The k-nearest neighbour method is a common statistical technique for solving classification problems 
(see, e.g., Fix and Hodges, 1951). In the following, the symbol Y either represents either a scalar, discrete 
random variable or a vector of random variables indicating the class to which a given statistical entity 
belongs. Moreover, the quantity Q represents a sample vector of explanatory variables to be used as inputs 
for the classification procedure. A sample consisting of N independent statistical entities i = 1, …, N,  
each of which is characterized by a pair of realisations {yi; qi} of Y and Q is also assumed to be given. 
Then the k-nearest neighbour procedure essentially consists of approximating the function representing  
the conditional expectation of Y for a given value Q* of Q by:

�	� either calculating a locally weighted average of the yi values of those entities where the associated 
realisations qi of Q are among the k closest neighbours of Q*,
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�	 or performing a locally weighted linear regression of Y on Q, in which only those entities  
in the sample are assigned a positive weight if they are among  the k closest neighbours of Q*.  

In doing so, each of the k closest neighbours can either be assigned the same weight, or each  
of them separately can be assigned a weight that declines with increasing distance from Q*. Both  
of these approaches have been nicely summarized, for example, by Chen, Härdle and Schulz (2004),  
and Cleveland and Loader (1995).

Typically, the k-nearest neighbour techniques requires all the conditioning variables included in Q  
to be continuous. This condition might easily be seen as too restrictive when there are either ordered 
discrete variables (like, e.g. school grades or credit ratings), or unordered discrete variables (e.g. information 
on the sectoral or geographical affiliation of a company). Hence, the need may arise to introduce  
a more general measure of the distance between two statistical entities in which all of these variable types  
can be included in an intuitively plausible manner. This is the main purpose of this paper. It hence proceeds 
as follows: Section 1 seeks to clarify how the distance between two statistical entities can be calculated  
if each of them is characterised by a specific realisation of such a mixture of continuous, ordered discrete 
and unordered discrete variables. The application of the proposed procedure in the context of binomial 
or multinomial classification problems is described in Section 2.  This is also where a measure of the out-
of-sample predictive accuracy and a selection rule for the number of neighbours, k, is given. Section 3  
presents an application. Last section concludes.

1 MEASURING THE DISTANCE BETWEEN PAIRS OF ENTITIES
1.1 Starting point
Let there be a sample of N entities (e.g. companies) i = 1, …, N, each of which is characterised by a tuple 
of characteristics qi = { xi, vi, zi }. Here,

�	 xi is an entity-specific realisation of a (K1×1) vector X of continuous variables, (e.g. the total revenue 
of a firm in a given year, or its total assets at a given point in time, etc.),

�	 vi is an entity-specific realisation of a ((K2 – K1)×1) vector V of ordered discrete variables (like, 
e.g., a firm’s credit rating, or an analyst recommendation [“Strong Buy”, “Buy”, “Hold” or “Sell”]), 
numbered consecutively in steps of 1, and

�	 zi is an entity-specific realisation of a ((K3 – (K2 + K1))×1) vector Z of unordered, discrete  
variables (like, e.g., a firm’s ISO country-of-residence identifier or its NAICS industry classification  
code). 

1.2 Pairwise distance based on continuous characteristics
The distance between two distinct entities i and j with respect to the values taken by X can be measured 
by Gower’s (1971) measure:

                                           ,      � (1)

where xi,s denotes the s’th element of the (K1×1) vector xi, and r(Xs) is the range (sample maximum minus 
sample minimum) of the values of Xs observed. 

In principle, the above Formula (1) is only one out of several distance measures that could be applied 
to measure the degree of dissimilarity prevailing between realisations of continuous random vectors; 
see, e.g., Weller-Fahy, Borghetti, and Sodemann (2015) for a theoretically substantiated overview.  
The motivation for choosing this particular measure is that it facilitates the aggregation of distance 
measures for the different variable types involved, as will be demonstrated below.
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1.3 Pairwise distance based on ordered discrete characteristics
Likewise, the distance between i and j with respect to the values taken by the components of V can be 
measured by:

                                           ,        � (2)

where ms is the number of possible realisations of the s-th ordered discrete variable. 
A rationale for this way of proceeding can be given as follows: Assume that that variable Vs is a rating 

grade, measured in equally spaced steps of unit length from 1 (= best possible outcome) to ms (= worst 
possible outcome). Then, the actual realisation taken by Vs can be assumed to be dependent on the value 
taken by a latent (=unobservable) variable  as follows:

vi,s = j if  v*
i  , s∈   ] ] with j ∈  {1, 2, ..., ms}.           � (3)

The distance between the mid-points of two neighbouring intervals inside the range of is Vs
*
   is 1/ms.

1.4 Pairwise distance based on unordered discrete characteristics
Finally, the distance between i and j with respect to the values taken by the components of Z can be  
measured by their separateness, or lack of overlap (see, e.g., Stanfill and Waltz, 1986), based  
on the Hamming Distance (Hamming, 1950):

                                                      .        � (4)

In Formula (4), I(.) denotes an indicator function that takes the value 1 if the condition in brackets 
holds true, and is set to zero otherwise, and ms is the number of distinct possible realisations of the s-th 
unordered discrete variable. 

The rationale underlying this way of proceeding can be explained as follows: the ms possible,  
yet mutually exclusive, realisations of a single, discrete unordered variable of the Zs can be recoded  
as a vector of ms auxiliary, binary variables A1 to Am(s). This technique of representing unordered 
categorical data, which is referred to as one-hot encoding,  is explained in an exemplary manner in Table 1  
(for the special case of ms = 4).

Table 1  Representing unordered categorical data via one-hot encoding

Source: Own construction

Values taken by the auxiliary variables A1 to Am(s)

Variables taken by original variable Z A1 A2 A3 A4

‘Tinker’ 1 0 0 0

‘Tailor’ 0 1 0 0

‘Soldier’ 0 0 1 0

‘Spy’ 0 0 0 1
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The distance prevailing between two specific realisations zi,s and zj,s of Zs with respect to the values 
ai,g and aj,g taken by the p-th of the ms auxiliary variables can thus be measured using the same latent 
variable approach as sketched in (3), which comes down to:

                                                                                                              .        � (5)

The overall distance between zi,s and zj,s can then be calculated as the average of the distances (5), 
calculated across all values 1, …, ms of the auxiliary variable index g:

, ,
      i s j sDistancebetween z and z
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The above normalisation will cause the distance between two different realisations of an unordered 
discrete variable (e.g. country of residence) to take the same value as the distance between two distinct 
yet immediately adjacent realisations of an ordered discrete variable having the same number of possible 
realisations. Using ms in the denominator of Formula (4) will cause the average perceived distance 
between pairs of observations with different values of Zs to shrink as the number of different realisations 
of this variable increases. This is well in line with intuition because ceteris paribus, the more fine-grained 
a classification scheme with discrete, unordered categories becomes, the greater the average pairwise 
similarity between two entities assigned to different classes will tend to become.

1.5 Overall pairwise distance between two entities
The overall distance score between two entities i and j can then be calculated by summing up the distance 
measures for the different types of variables given in (1), (2), and (4):

d(i,j) := dx(i,j) + dv(i,j) + dz(i,j) .            � (7)

2 ESTIMATION PROCEDURE AND GOODNESS-OF-FIT ASSESSMENT
2.1 Assigning estimated conditional probabilities to possible outcomes
The following setting applies to a situation where we have a discrete dependent variable Y with a finite 
number of possible values g = {1, 2, … G} (which may, but need not, be ordered). Then, if we have  
an observed or hypothetical entity characterized by the tuple q* = { x*, v*, z* }, we can estimate  
the conditional probability Pr(Y = g | Q = q*) using the k-nearest neighbour principle by applying  
the following sequence of steps:

(i)	� For each entity i in the sample, calculate the distance score with respect to the entity under 
consideration as:

	
+= +

 
.      � (8)
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(ii)	� Sort the object-specific dissimilarity scores obtained in (i) in ascending order. Let � � *kd  denote 
the k-th score in this ascending sequence, and � �1

 *kd �  denote the smallest value of � �, *d i  that 
exceeds � � *kd . 

(iii)	 Assign to each object in the sample a weighing factor  that is calculated as follows:

                                                                                      .        � (9)

	

(iv)	� Transform the outcomes of step (iii) into a normalized set of weighting factors  that sum 
up to 1:

                                                .� (10)
	

(v)	 Let ,  ,			�   (11)

	� where  denotes the locally linear least squares estimated 

of the conditional probability of (Y = g) given (q = q*). If the dependent variable Y has only two 
possible values (i.e. G = 2, and g ∈ {1; 2}), the concluding estimates of the related conditional 
probabilities can be set to  and  

respectively. 

(vi)	� Whenever the dependent variable Y has more than two possible values (i.e. G > 2), it cannot be  
taken for granted that the estimated conditional probabilities � �*

|p g qˇ  from step (v) sum up to  
unity. In this case, a normalisation needs to be applied to these provisional estimates, which 
amounts to setting the concluding estimate of *

(  |  )Pr Y g q q� �  to:

                                                                         .    � (12)

	

2.2 Out-of-sample goodness of fit assessment and choice of the number of neighbours
In order to assess the predictive reliability of the proposed method, and to choose a favourable value  
of number of neighbours, k, to be used, the leave-one-out log likelihood function can be used. It can be 
calculated as follows:

(1)	� For each observation in the sample, and for each of the possible values of g, calculate the quantity  

� �| , ˆ i ip g q� i.e. the estimated conditional probability:

(  |  )iPr Y g q q� �  ,

	� that is obtained by applying the above procedure to a sample from whichthe observation with 
index i has deliberately been omitted.  
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(2)	 Calculate the leave-one-out log likelihood function as:

.

 
.

The optimum value of k could then be equated with the one that maximizes the quantity given under 
point (2) above.

3 APPLICATION
3.1 Data
The dataset chosen for our sample application is the Automobile Data Set from 1985 Ward’s Automotive 
Yearbook, donated by Jeffrey C. Schlimmer3 and freely available online,4 where also more detailed 
information on the informational content of the variables of interest can be found. It contains  
N = 205 rows and 26 columns, the first of which is a relative risk score compared to equally priced vehicles. 
Theoretically, it ranges from (–3 = very safe) to (3 = very risky) in steps of 1, but the best score found  
in the sample was (–2). From the remaining 25 columns, the 20 summarized in Table 1 were used  
as explanatory variables. Ten entities were removed from the dataset used for estimation due to missing 
values.

3	� Jeffrey.Schlimmer@a.gp.cs.cmu.edu.
4	� <https://archive.ics.uci.edu/ml/datasets/automobile>.

Table 2  1985 Automobile Data Set: variables in use

Source: �Automobile Data Set from 1985 Ward's Automotive Yearbook, donated by Jeffrey C. Schlimmer, available at: <https://archive.ics.uci.edu/
ml/datasets/automobile>

Name Description

Risk score Dependent variable, ranging frorm –3 (safest) to 3 (most risky) in steps of 1

Make Brand name of manufacturer

Fuel-type Diesel or gas

Aspiration Standard or turbo

Num-of-doors Two or four

Drive-wheels 4wd, front-wheel or rear-while drive

Engine-location Front or rear

Wheel-base Continuous

Length Continuous

Width Continuous

Height Continuous

Curb-weight Continuous

Num-of-cylinders Integer

Engine-size Continuous

Bore Continuous

Stroke Continuous

Compression-ratio Continuous

Horsepower Continuous

Peak-rpm Continuous

City-mpg Continuous

Highway-mpg Continuous
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In this example, only continuous, integer and unordered discrete explanatory variables have been 
used, but it should nevertheless be suitable for demonstrating the general usefulness of the proposed 
way of proceeding. 

3.2 Results obtained with the for the k-Nearest Neighbour procedure
In order to avoid overfitting, the leave-one out approach sketched in Section 2.2 was employed. A related 
grid search procedure, the results of which are given in Figure 1, yielded an optimal value of k equal to 21.

Figure 1  Negative log-likelihood function for leave-one-out estimates for different values of k

Assuming that the predicted value of the dependent variable is always the one to which the model has 
assigned the highest conditional probability, the comparison of actual and predicted values results from 
applying the k-Nearest Neighbour Procedure with k = 21 to the entire dataset (Table 3).

Table 3  k-Nearest Neighbour estimation results: actual vs. predicted outcomes

Source: Own calculation

Source: Own calculation

Predicted

Actual

Indicator –2 –1 0 1 2 3 ∑

–2 0.0000% 1.5385% 0.0000% 0.0000% 0.0000% 0.0000% 1.5385%

–1 0.0000% 7.6923% 3.0769% 0.5128% 0.0000% 0.0000% 11.2821%

0 0.0000% 0.5128% 31.2821% 1.0256% 0.0000% 0.0000% 32.8205%

1 0.0000% 0.5128% 1.5385% 23.5897% 0.5128% 0.5128% 26.6667%

2 0.0000% 0.0000% 1.0256% 3.0769% 11.7949% 0.0000% 15.8974%

3 0.0000% 0.0000% 0.0000% 1.0256% 0.5128% 10.2564% 11.7949%

∑ 0.0000% 10.2564% 36.9231% 29.2308% 12.8205% 10.7692%

% correctly predicted = 84.6154%
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The geometric mean of model-generated ex-post probability estimates for the actually observed values 
of Y, which is calculated as

� �

1 1

(  |  ) i
N G

I y g
i

i g

Pr Y g Q q �

� �

� ���

equals 56.31%.

3.3 Comparison with an Ordered Probit Model
In order to assess the predictive performance of the proposed approach, we compared the nonparametric 
model advocated here to the more commonly used, parametric Ordered Probit model (see, e.g. Greene, 
2003, chapter 21.8). Results obtained for the Ordered Probit are given in Table 4. 

Source: Own calculation

Predicted

Actual

Indicator –2 –1 0 1 2 3 ∑

–2 0.5128% 1.0256% 0.0000% 0.0000% 0.0000% 0.0000% 1.5385%

–1 0.5128% 7.6923% 3.0769% 0.0000% 0.0000% 0.0000% 11.2821%

0 0.0000% 0.5128% 29.2308% 3.0769% 0.0000% 0.0000% 32.8205%

1 0.0000% 0.0000% 4.1026% 20.0000% 1.0256% 1.5385% 26.6667%

2 0.0000% 0.0000% 0.5128% 5.6410% 6.1539% 3.5897% 15.8974%

3 0.0000% 0.0000% 0.0000% 1.5385% 1.5385% 8.7180% 11.7949%

∑ 1.0256% 9.2308% 36.9231% 30.2564% 8.7180% 13.8462%

% correctly predicted = 72.3077%

Table 4  Ordered Probit Model: actual vs. predicted outcomes

In this case, we obtain a geometric mean of model-generated ex-post probability estimates for  
the actually observed values of Y that amounts to 50.41%.

CONCLUSION
The key advantage that nonparametric classification methods have over parametric models is that they  
do not require any assumptions about the form of the function that translates the values of the explanatory 
variables into conditional probabilities of the possible outcomes. Against this background, the purpose  
of this paper was to demonstrate that the scope of the standard k-Nearest Neighbour method can be  
extended in a way that enables the simultaneous consideration of continuous, ordered discrete,  
and unordered discrete explanatory variables. An exemplary application to a publicly available dataset 
demonstrated the feasibility of the proposed approach.
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