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Abstract

The article deals with the problem of the proper selection of the theoretical distribution to describe the empirical 
distribution of scanner prices. In the empirical study we use scanner data from one retail chain in Poland, i.e. monthly 
data on natural yoghurt, drinking yoghurt, long grain rice and coffee powder sold in 212 outlets in January and 
February 2022. Prices and price relatives were modeled using selected ten probability distributions with non-negative 
support, including two, three and four-parameter family of distributions In addition to the visual assessment in the 
form of empirical PDF and CDF figures, numerical criteria were used. These include information criteria values such 
as AIC, BIC, HQIC and p values calculated for the K-S, AD and CVM goodness-of-fit tests. Our research showed 
that at least two models could be distinguished as very accurate, which provides a good background for simulation 
research on price indices or for the construction of so-called population price indices.3

INTRODUCTION
Scanner data are a relatively new and at the same time cheap alternative data source in inflation 
measurement. The volume of scanner data is enormous compared to the datasets obtained as part of the 
traditional data collection and they provide detailed information about the products sold at the barcode 
level. As these data are usually obtained with high frequency (monthly, weekly, and in some countries even 
daily), it enables effective modeling of scanner prices. In turn, having well-matched theoretical probability 
distributions to empirical price distributions, we have a good background for simulation research on price 
indices or for the construction of so-called population price indices. This article addresses the problem 
of proper adjustment of the theoretical probability distribution to the distribution of real scanner prices.
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The article attempts to model the prices of food products, inter alia, due to the multitude of their 
representatives. In the empirical study we use scanner data from one retail chain in Poland, i.e. monthly 
data on natural yoghurt, drinking yoghurt, long grain rice and coffee powder sold in 212 outlets in January 
and February 2022. Prices and price relatives were modelled using selected ten probability distributions 
with non-negative support, including two, three and four-parameter family of distributions In addition 
to the visual assessment in the form of empirical PDF and CDF figures, numerical criteria were used. 
These include information criteria values such as AIC, BIC, HQIC and p values calculated for the K-S, 
AD and CVM goodness-of-fit tests. Our research showed that at least two models could be distinguished 
as very accurate.

Our paper consists of following sections. Section 1 describes the importance of scanner data, with 
the main advantages but also methodological challenges related to the implementation of these data  
in inflation measurement. This section also explains why scanner price modeling can be of great practical 
and theoretical importance. Section 2 presents probability distributions with non-negative support selected 
to price data modeling and two numerical criteria for comparisons of the quality of data modeling, i.e. the 
information criteria such as AIC, BIC and HQIC and p-values calculated while goodness-of-fit testing. 
Section 3 describes main stages of the implemented scanner data processing and it presents and describes 
results obtained for the set of selected probability distributions and applied goodness-of-fit tests, i.e. the 
Kolmogorov-Smirnow (K-S), Anderson-Darling (AD) and Cramer von Mises (CVM) tests. Final section 
lists general conclusions which can be drawn from our empirical study.

1 SCANNER DATA IN INFLATION MEASUREMENT
Scanner data mean transaction data that specify turnover and numbers of items sold by barcodes,  
e.g. GTIN (Global Trade Article Number), formerly known as the EAN (European Article Number) 
code (International Labour Office, 2004). These data are a quite new data source for statistical agencies 
and the availability of electronic sales data for the calculation of the Consumer Price Index (CPI) has 
increased over the past 20 years. They can be obtained from a wide variety of retailers (supermarkets, 
home electronics, Internet shops, etc.). However, the use of scanner data in the inflation measurement 
is associated with a number of methodological challenges discussed in the work.

1.1 The genesis, advantages and disadvantages of scanner data
We distinguish several basic sources of scanner data. The most valuable source of this type of data seems 
to be direct suppliers, i.e. points of sale with particular emphasis on supermarket chains. Supermarkets are 
powerful potential providers of scanned data - a typical supermarket has a database of 10 000–25 000 barcodes 
for products sold, most of which are food and drink. Theoretically similar providers of scanner data can also 
be smaller supermarkets, small retailers, pharmacies, travel agencies or even online stores, as long as they 
archive sales data taking into account product coding. The second, alternative source of scanner data may be 
companies specialized in market research. For case, some countries use the scanner data provided by Nielsen 
or GfK companies and include it in their national CPI estimates, nevertheless this is an expensive solution.

Listing main advantages of using scanner data we should note that: a) using scanner data is relatively 
cheap, automatic and based on huge  data volumes; b) these data sets are complete at the lowest level of 
aggregation, i.e. they provide information both on product prices and their sales value at the elementary 
level; c) this data can be obtained at a high frequency at the barcode level, which in turn enables precise 
modeling of product price distributions even at the lowest level of data aggregation. The advantage listed 
in point “c” is precisely the main topic of this article. 

Nevertheless, the decision to use scanner data is associated with a number of technological, IT and 
methodological problems (Białek, 2020). It is necessary to correctly and highly automatically classify 
products into COICOP groups and there is need also to precise match products over time. Some countries 
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implement data filtering before price index calculation (e.g. removal of products with extreme price changes). 
Ultimately, the Statistical Office is faced with the choice of the appropriate formula of the price index and 
the method of aggregation of indicators obtained on the basis of various data sources (Chessa, 2016).

1.2 Scanner data processing: classification and matching products
After downloading, formatting to the required form and pre-clearing the scanner data (deletion of records 
with missing data, deletion of deduplicates), all products should be classified into the appropriate elementary 
groups (COICOP 5 level) or their local subgroups (national COICOP 6 or lower). The classification  
of products can be carried out basically by two methods, and their selection can be determined by the 
content of the scanner data. Complete scanner data are transaction data, where at the level of GTIN 
codes we have information about the price of the product, the volume of its sales, sales unit, product label 
(detailed description), its weight, sometimes the material of execution, VAT or the size of the discount. Such 
a structure of information means that effective classification can be carried out based on machine 
learning methods, which, however, requires manual preparation of learning and test trials (Białek and 
Bęręsewicz, 2021). The second effective solution in the process of automatic product classification  
is to prepare dictionaries of keywords and phrases that uniquely identify the COICOP group to which 
the tested product belongs.

After the products have been correctly classified into the appropriate homogeneous segments, the 
products sold in the compared months should be matched. For proper matching of products, the product 
code (internal code, broadcast over the retail chain and external code, such as EAN or GTIN) and their 
labels are most often used, if they are sufficiently precise. Comparison of product labels, both at the stage 
of product classification and in the process of matching products over time, requires the use of text mining 
methods and appropriate measures of distance between text strings.

1.3 Why do we need fitted scanner price distributions?
This article addresses the problem of proper adjustment of the theoretical probability distribution  
to the empirical distribution of scanner prices. Of course, there is a natural question about the desirability 
of this type of consideration. 

In order to justify undertaking the research problem, let us note at the beginning that knowledge  
of the distribution of prices and the distribution of relative prices allows for the construction of the  
so-called population price indices. It is possible then to generalize the so-called sample elementary 
indices (the Dutot index, 1738; the Carli index, 1764; or the Jevons index, 1865) to the entire population  
of products from a given segment by determining the so-called population elementary price indices (Silver 
and Heravi, 2008; Białek, 2022). With certain technical assumptions about consumption levels (quantity 
distributions), it is also possible to infer the population Laspeyres price index (Białek, 2015).

Another argument may be the fact that by having accurate probabilistic price models, we are able  
to effectively construct simulation experiments to study the nature of price indices. For example, knowing 
the expected values of such distributions and using theorems about the distribution of sums and quotients 
of random variables, we can formulate expectations for price indices understood as random variables,  
and then check whether the indices determined on the basis of empirical data are close to these 
expectations. The above approach was used, for instance, in the papers by Białek and Bobel (2019) or Białek  
and Beręsewicz (2021) to optimize the choice of a multilateral price index.

2 THEORETICAL PROBABILITY DISTRIBUTION CONSIDERED
2.1 The list of considered probability distributions
Continuous distributions related to the support can be divided into distributions supported  
on a bounded interval, supported on the whole real axis, supported to semi-infinite intervals (usually [0,∞))  



2022

285

102 (3)STATISTIKA

and distributions with variable support. Due to the topic presented in the article, we limited ourselves 
only to distributions with a non-negative support.

We considered ten distributions divided into three groups according to the number of parameters. 
Distributions with two parameters are: the beta prime (BPr) (Johnson et al., 1995), Gompertz (Gom) 
(Johnson et al., 1995), inverse normal (InvN) (Chhikara and Folks, 1989), lognormal (Gaddum, 1945), 
log-Laplace (LLap) (Lindsey, 2004), Nakagami (Nak) (Nakagam, 1960) and Shifted Gompertz (SGom) 
(Bemmaor, 1994). Distributions with three parameters are: the inverse Weibull (InvW) (Drapella, 1993) 
and generalized gamma (GG) (Stacy, 1962). Distribution with four parameters is the generalized beta  
of the second kind (GB2) (McDonald, 1984).

The GG and GD2 distributions are actually distribution families. These families consist of other, 
more or less known distributions, which are referred to as their special cases (see Tables 1 and 2). In fact, 
there are much more models which could be incorporated in price data modeling. The selected PDFs 
are presented in Table 3.

Table 1 Sub-models of the GG distribution

Table 2 Sub-models of the GB2 distribution

a b c Sub-model

- 1 1 Exponential

- 1 - Gamma

- 1 c ∈ N Erlang

- - 1 Weibull

2 1 0.5n, n ∈ N Chi-square

 2 2 0.5n, n ∈ N Chi

σ  2 2 1 Rayleigh

σ  2 2  1.5 Maxwell–Boltzmann

Source: Own construction based on Stacy and Mihram (1965)

a b c d Sub-model

- 1 - - Singh–Maddala (Burr XII) 

- - 1 - Dagum (Burr III) 

- - - 1 Beta type II 

1 1 - - Standard Burr XII 

1 - 1 - Standard Burr III 

1 - - 1 Standard Beta type II 

- 1 1 - Fisk (log-logistic) 

- 1 - 1 Lomax (Pareto type II) 

- 1 - h Paralogistic 

- - 1 1 Inverse Lomax 

- - - α Inverse paralogistic 

Source: Mead et al. (2018)
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2.2 The used goodness-of-fit tests
Let M(Θ) be the model with the vector of parameters Θ and fM (x; Θ) be the PDF of this model. Let  
x1*, x2*, ... , xn* be a random sample of size n from the M(Θ). Our target is to estimate the unknown 
parameters Θ by using the maximum likelihood estimation (MLE) method. The likelihood function  
is given by:

� (1)

then the log-likelihood function is defined as:

� (2)

Formulas  have complex forms. In practice, the calculation of these derivatives is not necessary. 
We had better maximize the log-likelihood function using a mathematical software instead of struggling 
with a system of complicated nonlinear equations that may have extraneous roots.

To avoid local maxima of the log-likelihood function, the optimization routine was run repeatedly 
each time from different starting values that are widely scattered in the parameter space. The maximum 

Table 3 The PDFs used for data modeling

Distribution PDF

BPr

Gom

InvN

Log

LLap

Nak

SGom

InvW

GG

GB2

Source: Own construction
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likelihood estimates of parameters Θ were calculated in R software (R Core Team, 2014) using the fitdistr() 
function (package MASS).

The K-S, AD and CVM tests were used for model fitting, while the information criteria such as AIC, 
BIC and HQIC were used for comparisons of models. Let us remind the reader that:

� (3)

where l is the log-likelihood function (2), n is the sample size and p is the number of model parameters.

3 EMPIRICAL STUDY
3.1 Description of the used scanner data sets
In the following empirical study we use scanner data from one retail chain in Poland, i.e. monthly data 
on natural yoghurt (subgroup of COICOP 5 group: 011441), drinking yoghurt (subgroup of COICOP 5 
group: 011441), long grain rice (subgroup of COICOP 5 group: 011111) and coffee powder (subgroup 
of COICOP 5 group: 012111) sold in 212 outlets in January and February 2022 (52 618 records, 
which means 42 MB of data). These groups will be designated in our study as Cases 1–4, respectively.  
We defined a homogeneous product at the most detailed level, i.e. at the EAN bar code level. We 
detected the following number of different EANs with respect to analyzed product groups: 59 (natural 
yoghurt), 106 (drinking yoghurt), 28 (long grain rice) and 98 (coffee powder). For each EAN the 
monthly price was calculated as the so called unit value, i.e. the monthly product price was determined 
as the quotient of the total value of sales of a given product by the number of units of the product sold. 
For each analyzed Case, the following variants for the price samples were considered: prices from the 
beginning of the research period (denoted by "B"), prices from the end of the research period (denoted 
by "E") and the variant with partial price indices (variant "I" with relative prices, i.e. ratios of February 
prices to January prices).

3.2 Scanner data processing applied
Before fitting probability distributions, the data sets (mentioned in Section 3.1) were carefully 
prepared. First, after deleting records with the missing data and performing the deduplication 
process, the products were classified first into the relevant elementary groups (COICOP level 
5) and then into their subgroups (local COICOP level 6). Product classification was performed 
using the data_selecting() and data_classification() functions from the PriceIndices R package 
(Białek, 2021). The first function required manual preparation of dictionaries of keywords and 
phrases that identified individual product groups. The second function was used for problematic, 
previously unclassified products and required manual preparation of learning samples based on 
historical data. The classification itself was based on machine learning using random trees and the 
XGBoost algorithm (Tianqi and Carlo, 2016). Next, the product matching was carried out based  
on the available GTIN bar codes, internal retail chain codes and product labels. To match products we used  
the data_matching() function from the PriceIndices package. To be more precise: products with two 
identical codes or one of the codes identical and an identical description were automatically matched. 
Products were also matched if they had identical one of the codes and the Jaro-Winkler (1989) distance 
of their descriptions was smaller than the fixed precision value: 0.02. In the last step before calculating 
indices, two data filters were applied to remove unrepresentative products from the database, i.e. the 
data_filtering() function from the cited package was used. The extreme price filter (Białek and Beręsewicz, 
2021) was applied to eliminate products with more than three-fold price increase or more than double 
price drop from month to month. The low sale filter (van Loon and Roels, 2018) was used to eliminate 
products with relatively low sales from the sample (almost 35% of products were removed).
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3.3 Main results
Figures 1–4 show the estimated PDF and CDF for the selected models in relation to Cases I–IV, respectively. 
With very similar shapes of the estimated PDFs (see e.g. Figure 4; B, E data), additional numerical measures 
are necessary.

The first group of considered numerical measures consists of the values of information criteria: AIC, 
BIC and HQIC. Tables 4, 6, 8, 10 display values of the MLEs and the information criteria for Cases I–IV, 
respectively. The lowest values of the information criteria are marked in bold.

The second group of numerical measures includes values of all considered test statistics and the 
corresponding p-values. Tables 5, 7, 9, 11 present test statistic values and p-values calculated for the K-S, 
AD and CVM tests. The lowest statistics values (the highest p-values) are noted in bold.

The p-values for a given model were calculated as follows. Let Θ be the vector of model parameters. 
Having estimated parameters vector  for a given sample of size n, we calculated test statistics .  
Next, we generated 105 samples of size n for the given model with the estimated parameters vector  For 
each obtained sample s, we calculated the value of  . Finally, the p-value can be approximated 
as follows:

� (4)

As it is shown in Table 4, the GB2 model is the best in terms of AIC values for B, E, I data and in terms 
of BIC, HQIC values for E, I data. The Nak model is the best in terms of BIC, HQIC values for B data. 
The GB2 model (see Table 5) is definitely highlighted by the test statistic values and p values. The p-value 
ranking for the K-S test is the same as the p-value rankings for the AD and CvM tests. Please note, that 
the ranking on the basis of the information criteria differs from the analogical ranking based on p-values.

Figure 1	 PDFs and CDFs of distributions for (B), (E), (I), respectively. Case I
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Figure 1 	 (continuation)

Source: Own construction in R

Table 4 Values of MLEs and information criteria. Case I

Table 5 Goodness-of-fit tests. Case I

Model Data MLEs AIC BIC HQIC

Log

B  = 2.0451,  = 0.3916 302.118 306.273 303.74

E  = 2.0343,  = 0.4039 304.503 308.658 306.125

I  = –0.0109,  = 0.1084 –91.993 –87.838 –90.371

InvW

B  = –329.72,  = 336.6,  = 128.27 298.478 304.711 300.911

E  = –190.29,  = 197.11,  = 74.80 301.191 307.424 303.624

I  = –28.02,  = 28.966,  = 236.07 –72.178 –65.945 –69.745

Nak

B  = 2.17389,   = 76.4807 294.080 298.235 295.702

E  = 1.8883,  = 78.0220 302.415 306.570 304.037

I  = 22.6211,  = 1.0005 –94.792 –90.637 –93.170

GG

B  = 4.8563,  = 1.7551,  = 2.7431 295.954 302.186 298.387

E  = 1.7696,  = 1.1166,  = 5.6167 302.121 308.354 304.554

I  = 0.5932,  = 3.6700,  = 7.0233 –93.469 –87.236 –91.036

GB2

B  = 9.70,  = 9.52,  = 0.33,  = 0.70 292.778 301.088 296.022

E  = 11.38,  = 8.7,  = 0.29,  = 0.46 294.889 303.199 298.133

I  = 51.79,  = 0.99,  =  = 0.27 –99.038 –90.728 –95.794

Source: Own calculations in R

Model Data
KS AD CVM

statistic p-value statistic p-value statistic p-value

Log

B 0.1093 0.4492 1.3810 0.2085 0.1698 0.3354

E 0.1284 0.2621 1.588 0.1570 0.2044 0.2603

I 0.1387 0.1860 1.0977 0.3087 0.1668 0.3427
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Table 5   	 (continuation)

Model Data
KS AD CVM

statistic p-value statistic p-value statistic p-value

InvW

B 0.0995 0.5696 1.0789 0.3197 0.1313 0.4553

E 0.1135 0.4002 1.2654 0.2411 0.1617 0.3533

I 0.1884 0.0260 3.0886 0.0239 0.5037 0.0378

Nak

B 0.0961 0.6105 0.7224 0.5374 0.0795 0.6948

E 0.1167 0.3663 1.3943 0.2033 0.1767 0.3174

I 0.1262 0.2776 0.9383 0.3898 0.1447 0.4055

GG

B 0.0954 0.6233 0.727 0.5367 0.0798 0.6956

E 0.1158 0.3808 1.2141 0.2650 0.1456 0.4067

I 0.1200 0.3370 0.9207 0.4014 0.1458 0.4040

GB2

B 0.0893 0.7005 0.4409 0.8060 0.0622 0.8016

E 0.0819 0.7936 0.4946 0.7523 0.0637 0.7939

I 0.0807 0.8083 0.3494 0.8969 0.0491 0.8837

Source: Own calculations in R

As shown in Table 4, the GB2 model is the best in terms of AIC values for B, E, I data and in terms  
of BIC, HQIC values for E, I data. The Nak model is the best in terms of BIC, HQIC values for B data. 

Figure 2	 PDFs and CDFs of distributions for (B), (E), (I), respectively. Case II
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Figure 2 	 (continuation)

Source: Own construction in R

Table 6 Values of MLEs and information criteria. Case II

Model Data MLEs AIC BIC HQIC

Log

B  = 2.0977,  = 0.4639 302.118 306.273 303.74

E  = 2.1125,  = 0.4897 304.503 308.658 306.125

I  = 0.0148,  = 0.0803 –91.993 –87.838 –90.371

BPr

B  = 51.7207,  = 6.7802 298.478 304.711 300.911

E  = 46.6895,  = 6.0785 301.191 307.424 303.624

I  = 313.0666,  = 308.4696 –72.178 –65.945 –69.745

SGom

B  = 0.3309,  = 9.7901 294.080 298.235 295.702

E  = 0.2962,  = 7.5927 302.415 306.570 304.037

I  = 10.2637,  = 24996.2643 –94.792 –90.637 –93.170

GG

B  = 0.0147,  = 0.4545,  = 18.1429 295.954 302.186 298.387

E  = 0.0142,  = 0.4431,  = 17.2612 302.121 308.354 304.554

I  = 0.1128,  = 1.7436,  = 46.5808 –93.469 –87.236 –91.036

GB2

B  = 8.60,  = 3.38,  = 46.76,  = 0.28 292.778 301.088 296.022

E  = 10.95,  = 5.2,  = 1.41,  = 0.21 294.889 303.199 298.133

I  = 22.54,  = 0.91,   = 4.23,  = 0.705 –99.038 –90.728 –95.794

Source: Own calculations in R

The GB2 model (see Table 5) is definitely highlighted by goodness-of-fit tests. The p-value ranking for 
the K-S test is the same as the p-value rankings for the AD and CvM tests. Based on the graphical and the 
numerical results, the GB2 and Nak models are considered as ones of the best models for the analyzed 
data set.

The GB2 model (see Table 6) is the best in terms of information criteria values. The GB2 model  
(see Table 7) is definitely distinguished by goodness-of-fit tests. The p-value ranking for the K-S test  
is the same as the p-value rankings for the AD and CvM tests. Based on the graphical and the numerical 
results, the GB2 model is considered as one of the best models for the Case II.
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Table 7 Goodness-of-fit tests. Case II

Model Data
KS AD CVM

statistic p-value statistic p-value statistic p-value

Log

B 0.2309 0 5.9991 0.0011 1.1011 0.0015

E 0.1817 0.0015 4.9616 0.0030 0.8780 0.0046

I 0.1307 0.0490 2.3762 0.0576 0.4320 0.0596

BPr

B 0.21107 0.0001 4.4519 0.0053 0.8237 0.0063

E 0.1625 0.0067 3.4589 0.0165 0.6074 0.0213

I 0.1307 0.0491 2.3736 0.0588 0.4319 0.0604

SGom

B 0.2507 0.00000 7.1156 0.0003 1.3038 0.0004

E 0.2094 0.0001 6.4618 0.0007 1.1511 0.0011

I 0.1772 0.0023 5.6305 0.0015 1.0541 0.0017

GG

B 0.2436 0 7.4065 0.0003 1.3697 0.0003

E 0.1911 0.0008 6.2738 0.0008 1.1272 0.0012

I 0.1418 0.0259 2.9891 0.0284 0.5430 0.0318

GB2

B 0.1176 0.0993 0.8511 0.4517 0.1615 0.3580

E 0.0704 0.6438 0.4582 0.7999 0.0645 0.7866

I 0.0577 0.8513 0.3730 0.8759 0.0663 0.7766

Source: Own calculations in R

Figure 3	 PDFs and CDFs of distributions for (B), (E), (I), respectively. Case III
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Figure 3 	 (continuation)

Source: Own construction in R

Table 8 Values of MLEs and information criteria. Case III

Model Data MLEs AIC BIC HQIC

Log

B  = 2.4195,  = 0.4286 171.507 174.171 172.321

E  = 2.4019,  = 0.4157 168.808 171.472 169.622

I  = -0.0176,  = 0.1809 –13.281 –10.616 –12.466

Nak

B  = 1.5029,  = 182.3891 174.781 177.445 175.595

E  = .6492,  = 170.1581 170.679 173.343 171.493

I  = 7.1613,  = 1.0369 –10.1622 –7.4978 –9.3477

Gom

B  = 0.02556,  = 0.1196 182.754 185.418 183.568

E  = 0.0204,  = 0.1497 177.189 179.854 178.004

I  = 0.0642,  = 3.6824 7.689 10.353 8.503

GG

B  = 0.0303,  = 0.5097,  = 20.9009 174.037 178.034 175.259

E  = 0.0614,  = 0.5585,  = 18.6752 171.062 175.059 172.284

I  = 0.0597,  = 1.1157,  = 23.2369 –9.8031 –5.8065 –8.5813

GB2

B  = 1.10,  = 1.75,  = 39.14,  = 5.44 175.265 180.594 176.893

E  = 0.63,  = 1.92,  = 58.11,  = 19.44 172.836 178.165 174.465

I  = 62.04,  = 0.96,  = 0.15,  = 0.13 –18.987 –13.658 –17.358

Source: Own calculations in R

The Log model (see Table 8) is the best in terms of information criteria values for B, E data and the 
GB2 model is the best in terms of information criteria value for I data. The GB2 model (see Table 9)  
is the best in terms of goodness-of-fit tests. The p-value ranking for the K-S test is the same as the p-value 
rankings for the AD and CvM tests. Based on the graphical and the numerical results, the Log and GB2 
models are considered to be best models in the case of  the third analyzed data set.
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Table 9 Goodness-of-fit tests. Case III

Model Data
KS AD CVM

statistic p-value statistic p-value statistic p-value

Log

B 0.1057 0.8800 0.2854 0.9492 0.04485 0.9103

E 0.1043 0.8896 0.2833 0.9496 0.0382 0.9444

I 0.1944 0.2102 1.5174 0.1710 0.2930 0.1406

Nak

B 0.1602 0.4254 0.5675 0.6791 0.1006 0.5870

E 0.1279 0.7028 0.4825 0.7628 0.0777 0.7082

I 0.2232 0.1040 1.7599 0.1242 0.3435 0.1001

Gom

B 0.1773 0.3070 1.0727 0.3227 0.1609 0.3613

E 0.1521 0.4890 0.8627 0.4365 0.1291 0.4611

I 0.2624 0.0342 3.2897 0.0201 0.6357 0.0178

GG

B 0.1184 0.785 0.3341 0.910 0.0547 0.851

E 0.1126 0.8305 0.3150 0.92525 0.0446 0.9113

I 0.2089 0.151 1.6257 0.150 0.3171 0.120

GB2

B 0.1055 0.8822 0.2504 0.970 0.0366 0.952

E 0.0994 0.9185 0.2746 0.9552 0.0362 0.9539

I 0.1545 0.4685 0.7612 0.5570 0.1249 0.4783

Source: Own calculations in R

Figure 4	 PDFs and CDFs of distributions for (B), (E), (I), respectively. Case IV
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Figure 4 	 (continuation)

Source: Own construction in R

Table 10 Values of MLEs and information criteria. Case IV

Model Data MLEs AIC BIC HQIC

InvN

B  = 3.9891,  = 135.4686 971.116 976.286 973.207

E  = 68.6115,  = 127.9516 991.298 996.468 993.390

I  = 1.0579,  = 75.4539 –126.964 –121.794 –124.873

Log

B  = 3.9796,  = 0.6072 964.353 969.523 966.445

E  = 4.0294,  = 0.6312 981.689 986.859 983.780

I  = 0.0498,  = 0.1174 –128.024 –122.854 –125.933

LLap

B  = 3.9500,  = 0.9748 979.515 984.685 981.606

E  = 4.0239,  = 0.9958 990.352 995.522 992.443

I  = 0.0179,  = 0.9604 104.051 109.221 106.142

GG

B  = 0.0827,  = 0.4213,  = 15.7802 965.043 972.798 968.179

E  = 0.0515,  = 0.3959,  = 16.4507 982.693 990.448 985.829

I  = 0.6722,  = 3.7761,  = 5.8984 –134.951 –127.196 –131.814

GB2

B  = 2.79,  = 70.66,  = 0.90,  = 1.49 963.290 973.630 967.472

E  = 3.79,  = 69.99,  = 0.59,  = 0.91 976.721 987.061 980.904

I  = 105.66,  = 1.01,  = 0.16,  = 0.10 –149.997 –139.657 –145.815

Source: Own calculations in R

Table 11 Goodness-of-fit tests. Case IV

Model Data
KS AD CVM

statistic p-value statistic p-value statistic p-value

InvN

B 0.1312 0.0618 1.1101 0.3020 0.1775 0.3132

E 0.1301 0.0661 1.6027 0.1530 0.2493 0.1884

I 0.1420 0.0347 2.2576 0.0679 0.3776 0.0834
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Table 11   	 (continuation)

Model Data
KS AD CVM

statistic p-value statistic p-value statistic p-value

Log

B 0.1092 0.1786 0.6996 0.5569 0.1010 0.5797

E 0.1041 0.2228 0.9124 0.4067 0.1265 0.4692

I 0.1393 0.0406 2.2054 0.0713 0.3707 0.0862

LLap

B 0.1305 0.0751 2.5158 0.0584 0.3203 0.1354

E 0.13844 0.0418 2.4393 0.0533 0.3188 0.1203

I 0.3647 0.0000 25.2491 0.0000 5.0748 0.0000

GG

B 0.0932 0.3421 0.5533 0.6939 0.0763 0.7158

E 0.0888 0.3965 0.7447 0.5220 0.0977 0.5954

I 0.1244 0.0899 2.3132 0.0635 0.4049 0.0715

GB2

B 0.0734 0.6386 0.4695 0.7805 0.0681 0.7654

E 0.0592 0.8600 0.4195 0.8279 0.0529 0.8595

I 0.1039 0.2242 1.0053 0.8787 0.1700 0.3343

Source: Own calculations in R

The Log model (see Table 10) is the best in terms of BIC, HQIC values for B data and in terms of BIC 
values for E data. The GB2 model (see Table 10) is the best in terms of AIC values for B data, in terms  
of AIC and HQIC values for E data, in terms of information criteria values for I data. The GB2 model  
(see Table 11) is the best in terms of goodness-of-fit tests. The p-value ranking for the K-S test provides the 
same hierarchy of models as p-value rankings based on the AD and CvM tests. On the basis of graphical 
and numerical results, the Log and GB2 models are considered to be best models for the Case IV.

CONCLUSIONS  
We used a distribution family with a non-negative domain to model scanner prices and relative scanner 
prices of natural yoghurt, drinking yoghurt, long grain rice and coffee. For the ranking of selected 
models, we used the values of the information criteria and p-values calculated for the goodness-of-fit 
tests. Interestingly, the ranking of models according to the AIC criterion is the same as according to the 
BIC and HQIC criteria (see Section 3.3). The ranking of the models according to the p-values determined 
for the K-S test is the same as according to the p-values obtained for the AD and CVM tests.

The article shows that the greater the number of model parameters, the more special cases a given 
model has (see Tables 1 and 2). One might expect that as the number of model parameters increases, 
the model will fit the data better. This rule does not apply to prices in Case 3 (see Table 8; data B, E),  
as the values of the information criteria taking into account the number of model parameters are smaller 
for the Log model (with two parameters) than for the GB2 model (with four parameters). In general, 
however, models with more parameters allow for more flexibility in the manipulation of normal and central 
moments of the distribution, which may be important in organizing simulation studies on price indices.

In summary, the generalized beta of the second type and the lognormal model are best suited for 
modeling scanner prices and relative scanner prices. Good results for the lognormal distribution obtained 
for the analyzed food products are consistent with the common opinion that this distribution characterizes 
product prices well (Silver and Heravi, 2007). This model was implemented in the PriceIndices package 
in the generate() function, which is used to generate artificial scanner data sets (Białek, 2021). Several  
of the remaining models also seem to be of good quality in price modeling, with the final selection  
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of the model probably depending on the product segment and the definition of a homogeneous product 
(the lower the aggregation level, the greater the price fluctuations we observe).

Potential directions for further work include an attempt to model the amount of purchased products 
(and thus consumption distribution) and, consequently, possibly also weighted indices. From the 
theoretical point of view, it would also be interesting to investigate whether the expected values determined  
on the basis of the theoretical distributions of weighted indices correspond to their sample values.
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