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Abstract

A new randomized response technique for estimating the population total, or the population
mean of a quantitative variable is proposed. It provides a high degree of protection to the
respondents because they never report their data. Therefore, it may be favorably perceived
by them and increase their willingness to cooperate. Instead of revealing the true value of the
characteristic under investigation, the respondent only states whether the value is greater
(or smaller) than a number which is selected by him/her at random and is unknown to the
interviewer. For each respondent, this number, a sort of individual threshold, is generated
as a pseudorandom number. Furthermore, two modifications of the proposed technique are
presented. The first modification assumes that the interviewer also knows the generated
random number. The second modification deals with the issue that, for certain variables,
such as income, it may be embarrassing for the respondents to report either high or low
values. Thus, depending on the value of the fixed threshold (unknown to the respondent), the
respondent is asked different questions to avoid being embarrassed. The suggested approach
is applied in detail to the simple random sampling without replacement, but it can be,
after a straightforward modification, applied to many sampling schemes, including cluster
sampling, two-stage sampling, or stratified sampling. The results of the simulations illustrate
the behavior of the proposed technique.
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Czech Republic and Prague University of Economics and Business, Fac. of Informatics and Statistics,
W. Churchill Sq. 4, CZ – 130 67 Prague 3, Czech Republic.
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INTRODUCTION

A steady decline in response rates has been reported in many surveys in most countries
around the world, see, e.g., Steeh (2001) or Stoop (2005). This decline is observed regardless
of the mode of the survey, e.g., face-to-face survey, paper/electronic questionnaire, internet
survey, or telephone interviewing. Furthermore, this trend has continued despite additional
procedures aimed at reducing refusal and increasing contact rates; see Brick (2013) among
others.

The growing concern about “invasion of privacy” therefore represents an important
challenge for statisticians. Quite naturally, a respondent may be hesitant or even evasive in
providing any information which may indicate a deviation from a social or legal norm and/or
which he/she feels that might be used against him/her some time later. Therefore, if we ask
sensitive or pertinent questions in a survey, conscious reporting of false values would often
occur, see Särndal et al. (1992:547). Unfortunately, standard techniques such as reweighting
or model-based imputation cannot usually be applied; for a detailed discussion see Särndal
et al. (1992:547) or Särndal and Lundström (2005). On the other hand, this issue can be
resolved, at least partially, using randomized response techniques (RRT). Comprehensive
information on the broad scope of methods and theoretical foundations of RRT can be found
in Chaudhuri (2017), Chaudhuri and Christofides (2013), Chaudhuri and Mukerjee (1988),
Fox (2016) or Chaudhuri et al. (2016) among others.

For all of the reasons mentioned above, different RRTs have been developed with the
goal of reducing the nonresponse rate and obtaining unbiased estimates. These techniques
began with a seminal paper Warner (1965), aimed at estimating the proportion of people
in a given population with sensitive characteristics, such as substance abuse, unacceptable
behavior, criminal past, controversial opinions, etc. In Eriksson (1973) and in Chaudhuri
(1987) the authors modified Warner’s method to estimate the population total of a quan-
titative variable. However, in our opinion, these “standard RRTs” aimed at estimating the
population total are rather complicated and demanding on both the respondents and the
survey statisticians for various real-life applications; see also the discussion in Chaudhuri
(2017). They require “nontrivial arithmetic operations” from respondent within the Chaud-
huri’s approach, while the survey statistician must expend a lot of effort related with the
design of suitable randomization devices to be used for masking the sensitive variables in
the Eriksson’s approach.

Despite their advantages, practically all RRTs suffer from larger or smaller limitations,
especially in the following.

– Lack of reproducibility.
– Lack of trust from respondents because the randomization device is controlled by the

interviewer.
– Higher cost and higher variance of the estimators due to the use of random devices.

To avoid at least partially these limitations, already long time ago the statisticians sug-
gested other approaches not requiring any random devices, These so-called non-randomized

response (NRR) techniques are typically based on auxiliary questions, instead on random de-
vices, and their alternative designs include, but are not limited to, unrelated question design,
contamination design, multiple trials, and quantitative data design. Recently, researchers
revitalized these ideas; see a series of papers by Tang, Tian, Wu, and their followers. To the
best of our knowledge, they concentrated mainly on estimating proportions, not the totals.
The NRR techniques are presented in detail in the monograph Tian and Tang (2014).

In any case, when suggesting any randomization device, we should always keep in mind
that the main issue is not whether the in-person interviewer or telephone interviewer knows
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the random numbers or the outcome of other random mechanisms used, but whether the
random number is given back to the researcher evaluating the survey or to the survey spon-
sor. Personally, we prefer that the interviewer checks the methodology, not the realization
itself.

Finally, we would like to point out that the question of credibility is not only a mat-
ter for statisticians, but more and more a task for psychologists. While statisticians must
suggest procedures that are “sufficiently random” in their eyes, psychologists must find and
offer ways to convince the respondents that they are not cheated. Unfortunately, a detailed
discussion of this topic would go beyond the scope of this paper.

In this paper, we propose a method which is simpler in comparison with those proposed
previously and which is practically applicable. The respondent is only asked whether the
value of a sensitive variable reaches at least a certain random lower bound. This technique
and its modifications are developed in detail and applied to simple random sampling without
replacement. Their pros and cons are thoroughly discussed and illustrated using simulations.

The main advantages of the suggested method include the ease of implementation, simple
use by the respondent, and practically acceptable precision. Moreover, respondents’ privacy
is well protected because they never report the true value of the sensitive variable. Unlike
in Chaudhuri’s or Eriksson’s approach, there is no issue with the physical random device
design. A disadvantage may be, from a certain point of view, a lower degree of confidence
in anonymity due to the extrinsic device/technique used for generating random numbers.

The paper is organized as follows. In Section 1, selected issues of the RRTs for the esti-
mation of the population total, or population mean, are concisely discussed. In Section 2, a
new randomized response technique and its two modifications are proposed, their properties
studied and the goals for future work summarized. Section 3 illustrates the suggested ideas
with the aid of a simulation study. The main conclusions of the paper follow.

1 SELECTED REMARKS ON RRT INTENDED TO ESTIMATE POPULATION TOTAL

AND THEIR PROPERTIES

Consider a finite population U = {1, . . . , N} of N identifiable units, where each unit can
be unambiguously identified by its label. Let Y be a sensitive quantitative variable. The
objective of the survey is to estimate the population total tY =

∑
i∈U Yi or, alternatively,

the population mean tY = tY /N , of the variable surveyed. To do this, we use a random
sample s selected with probability p(s), described by a sampling plan with a fixed sample
size n. Let us denote by πi the probability of inclusion of the ith element in the sample, that
is, πi =

∑
s�i p(s), and by ξi the indicator of inclusion of the ith element in the sample s,

i.e., ξi = 1 if s � i and ξi = 0 otherwise. We do not introduce all notions from scratch and
refer the reader to Särndal et al. (1992:547) or the more rigorous monograph Tillé (2006).

As argued above, in practice it is often impossible to obtain the values of the surveyed
variable Y in sufficient quality due to its sensitivity. Therefore, statisticians try to obtain
from each respondent at least a randomized response Z that is correlated to Y . This ran-
domization of the responses must be carried out independently for each population unit in
the sample and independently of the sampling plan p(s).

In such a case, the survey has two phases. First, a sample s is selected from U and then,
given s, responses Zi are realized using the selected RRT. We denote the corresponding
probability distributions by p(s) and q

(
r |s

)
. In this setting, the notions of expected value,

unbiasedness, and variance are tied to a two-fold averaging process.

– Over all possible samples s that can be drawn using the selected sampling plan p(s).
– Over all possible response sets r that can be realized given s under the response distri-

bution q
(
r |s

)
.
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In the sequel, we follow the literature and, where appropriate, denote the expectation op-
erators with respect to these two distributions by Ep and Eq, respectively.

In a direct survey, the population total tY is usually estimated from the observed values
Yi using a linear estimator ts =

∑
i∈s bsiYi, where the weights bsi follow the unbiasedness

constraint
∑

s�i p(s)bsi = 1, i = 1, . . . , N . If πi > 0 ∀i ∈ U , then Horvitz-Thompson’s
estimator

tHT

s =
∑

i∈s

Yi
πi

(1)

is a linear unbiased estimator with weights bsi = 1/πi, and Ep

(
tHT
s

)
= tY , see Horvitz and

Thompson (1952) or Section 2.8 in Tillé (2006) for details.
If the survey is conducted using RRT, the true values of Yi for the sample s are unknown

and, instead of them, the values of random variables Zi correlated to Yi are collected.
Variables Zi are usually further transformed into another variables Ri, which are more
suitable for the construction of the desired estimator, and then the population total is
typically estimated using a Horvitz-Thompson’s type estimator

tHT,R

s =
∑

i∈s

Ri

πi
. (2)

Suppose now that we have an estimator (a formula, or a computational procedure) for
estimating the population total tY or population mean tY ; we denote it by tRY and t

R

Y ,
respectively. The subscript R emphasizes that the estimator is based on the values of Ri,
i.e., on randomized responses. Furthermore, we assume that the randomized responses Ri

follow a model for which it holds E
(
Ri

)
= Yi, Var

(
Ri

)
= φi ∀i ∈ U , and Cov

(
Ri, Rj

)
=

0 ∀i �= j, i, j ∈ U . Note that the variance function φi of a randomized response Ri is a
function of Yi.

Recall that the estimator tRY of the population total tY is conditionally unbiased, if the
conditional expectation of tRY given the sample s is equal to the current estimator ts that
would be obtained if no randomization took place, that is, if Eq

(
tRY | s

)
= ts. The subscript s

indicates that the “usual” estimator based on the nonrandomized sample, for example the
Horvitz-Thompson’s one, is used, and Eq

(
tRY

∣∣ s
)
stands for the conditional expectation of

tRY given the sample s with respect to the distribution induced by the randomization of
responses. For the estimator t

R

Y of the population mean, we proceed analogously.
If tRY is conditionally unbiased and ts is unbiased, then tRY is also unbiased, since E

(
tRY
)
=

E p

(
E q(t

R
Y

∣∣ s)
)
= E p

(
ts
)
= tY . Analogously, it holds E

(
t
R

Y

)
= tY . Moreover, by a standard

formula of the probability theory, we get the variance of tRY in the form

Var
(
tRY
)
= E p

(
Var q

(
tRY

∣∣ s
))

+Var p
(
E q

(
tRY

∣∣ s
))

= E p

(
Var q

(
tRY

∣∣ s
))

+Var p
(
ts
)
. (3)

The second term on the right-hand side of (3) is, obviously, the variance of the estimator
that would apply if no randomization of responses was deemed necessary, while the first term
represents the increase of the variance produced by the randomization. In other words, the
two terms on the right-hand side of (3) represent, respectively, contribution by randomized

response technique used and contribution by sampling variation to the total variance of tRY .
When treating t

R

Y , we proceed analogously.
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Because the design-based expression for the variance of ts is known for the most common
sampling procedures, we can focus on the contribution of randomization and study it in more
detail. For example, for the estimator tHT,R

s given by (2), we have

Var
(
tHT,R

s

)
= E p

(
Var q

(
tHT,R

s

∣∣ s
))

+Var p
(
E q

(
tHT,R

s

∣∣ s
))

= E p

(∑

i∈U

φiξi
π2
i

)
+Var p

(
tHT

s

)
=

∑

i∈U

φi

πi
+Var

(
tHT

s

)
. (4)

Several techniques for estimating the population total were suggested in the literature.
The papers Eriksson (1973) and Chaudhuri (1987) were at the origin, and became a bench-
mark for many following approaches. Both techniques have been further developed and
improved by other researchers; see, e.g., interesting papers Arnab (1995, 1998) or Gjest-
vanga and Singh (2009). The ideas and a representative review of further research are
presented in a monograph Chaudhuri (2017). Another type of randomization technique was
suggested in a series of papers by Dalenius and his colleagues, e.g., Bourke and Dalenius
(1976) or Dalenius and Vitale (1979). Among recent papers on the topic of sensitive ques-
tions in population surveys, we would like to mention, for example, papers by Kirchner
(2015) and Trappmann (2014). In both of them, long lists of relevant references can be
found. Finally, recall that probably the most comprehensive account of developments in
sample survey theory and practice can be found in Pfeffermann and Rao (2009a,b), or in
the more recent monographs Arnab (2017), Tian and Tang (2014), Tillé (2020) or Wu and
Thompson (2020).

2 NEW RANDOMIZED RESPONSE TECHNIQUE

In this section, we suggest a completely different approach. Assume that the studied sen-
sitive variable Y is non-negative and bounded from above, i.e., 0 ≤ Y ≤ M . First, let us
assume the upper bound M of the variable Y is known. Each respondent performs, inde-
pendently of the others, a random experiment generating a pseudorandom number Υ from
the uniform distribution on interval (0,M), while the interviewer does not know this value.
The respondent can generate the pseudorandom number Υ using, for example, a laptop
online/offline application; for some other possibilities, see Section 2.4. The respondent then
answers a simple question: “Is the value of Y greater than Υ?”

(
e.g.: “Is your monthly income

greater than Υ?”
)
.

For certain sensitive variables, such as the total amount of alcohol consumed within a
certain period, it is better to use a question: “Is the value of Y lower than Υ?” In such a case
we recode the response Zi,(0,M) to Z�

i,(0,M) = 1−Zi,(0,M), and apply the suggested RRT to
Z�
i,(0,M).

The response of the ith respondent follows the alternative distribution with the param-
eter Yi/M , that is

Zi,(0,M) =

{
1 with probability Yi

M , if Υi < Yi,

0 with probability 1− Yi

M , otherwise.
(5)

Therefore, E
(
Zi,(0,M)

)
= P

(
Υi < Yi

)
= Yi/M and Var

(
Zi,(0,M)

)
=

(
Yi/M

)(
1 − Yi/M

)
.

Therefore, we transform Zi,(0,M) to Ri,(0,M) = MZi,(0,M), for which we have

E
(
Ri,(0,M)

)
= Yi and Var

(
Ri,(0,M)

)
= Yi

(
M − Yi

)
. (6)
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2.1 Application to the simple random sampling

Consider now the situation in which the sampling plan p(s) is a simple random sampling
without replacement with a fixed sample size n. Denote, as in Section 1, by tY = 1

N

∑
i∈U Yi

the population mean, by S2
Y = 1

N−1

∑
i∈U

(
Yi − tY

)2
the population variance. In this case,

the inclusion probabilities are constant, that is, πi = P (ξi = 1) = n/N ∀i ∈ U .
Let the population total tY be estimated using the Horvitz-Thompson’s type estimator

tHT,R

(0,M) =
N

n

∑

i∈s

Ri,(0,M). (7)

It follows from (6) that this estimator is unbiased, so let us calculate its variance. For
this purpose (4) can be used effectively. First, note that in the case considered πi = n/N ,
and due to (6) φi = Yi(M − Yi). Second, taking into account variance of the simple random
sampling without replacement, see Section 4.4 in Tillé (2006) for details, we obtain after a
straightforward calculation

Var
(
tHT,R

(0,M)

)
=

N2

n

(
tY (M − tY )−

N − 1

N
S2
Y

)
. (8)

To characterize the variance of the suggested estimators more deeply and to get a more
transparent understanding of the variance of the suggested RRT, we introduce two auxiliary
characteristics termed measures of concentration. More precisely, let us denote

ΓY,M =
1

N

∑

i∈U

Yi
M

(
1−

Yi
M

)
=

1

MN

∑

i∈U

Yi

︸ ︷︷ ︸
1
M

tY

−
1

M2N

∑

i∈U

Y 2
i

︸ ︷︷ ︸
1

M2 Y
2

=
tY
M

−
Y 2

M2
(9)

and

Γ
Y ,M

=
tY
M

(M − tY )

M
=

tY
M

−
t
2
Y

M2
. (10)

In the sequel, we call ΓY,M the mean relative concentration measure, and Γ
Y ,M

the proximity

measure of the population mean tY to M/2.
If Yi are iid random variables with finite variance σ2 and an expectation µ, then, by the

law of large numbers, both ΓY,M and Γ
Y ,M

converge, as N → ∞, with probability 1 to

ΓY,M,as =
µ

M

(
1−

µ

M

)
−

σ2

M2
and Γ

Y ,M,as
=

µ

M

(
1−

µ

M

)
. (11)

We call ΓY,M,as the asymptotic mean relative concentration measure, and Γ
Y ,M,as

the asymptotic

proximity measure of the population mean tY to M
2 . Note that both ΓY,M,as and Γ

Y ,M,as
exist

if 0 ≤ Yi ≤ M ∀i ∈ U .
Let us focus on ΓY,M and Γ

Y ,M
in more detail. First, note that in our setting both

are population characteristics, not random variables. Second, both take their values in the
interval [0,1/4], and are equal to zero only in pathological cases when either Yi = 0 ∀i ∈ U

or Yi = M ∀i ∈ U . The higher these measures, the higher the variance of tHT,R

(0,M) . The mean
relative concentration measure ΓY,M reaches its maximum 1/4 when all values are at the
center of the interval (0,M), that is, if Yi = M/2 ∀i ∈ U . The proximity measure Γ

Y ,M
of

the population mean to the center of the interval (0,M) reaches its maximum 1/4 only if the
population mean is at the center of the interval, that is, tY = M/2. This case occurs, e.g.,



2022

211

102 (2)STATISTIKA

when random variable Y is symmetric around the center of the interval M/2; this feature is
certainly true for the uniform distribution on (0,M).

For a fixed value of the upper bound M , population size N and sample size n, the
contribution of the suggested RRT to the variance of tHT,R

(0,M) depends, up to a multiplicative
constant, on ΓY,M , because it holds

E p

(
Var q

(
tHT,R

(0,M)

∣∣ s
))

=
M2N2

n

1

N

∑

i∈U

Yi
M

(
M − Yi

M
︸ ︷︷ ︸

ΓY,M

)
=

M2N2

n
ΓY,M . (12)

Analogously, this contribution can also be expressed, up to multiplicative constants, by
Γ
Y ,M

and S2
Y , because it holds

E p

(
Var

(
tHT,R

(0,M)

∣∣ s
))

=
M2N2

n
Γ
Y ,M

−
N(N − 1)

n
S2
Y . (13)

Thus, both ΓY,M and Γ
Y ,M

can help us explain how the suggested RRT increases the
variance of the estimator of the population total tY for distributions symmetrical around
M/2, for distributions concentrated close to the center of (0,M), symmetrical around M/2,
or uniformly distributed. Moreover, they show that the suggested approach is especially
suitable for skewed distributions, provided that they are concentrated around their mean
values. Let us sum up: both measures of concentration help us not only to describe the
variance of the estimator used, compare (12) and (13), but also to interpret it better.

Remark 1. If the values of Y are bounded both from below and above, that is, 0 < m ≤

Y ≤ M , then variance of tHT,R

(0,M) can be significantly reduced by generating pseudorandom
numbers Υi from the uniform distribution on the interval (m,M) instead on (0,M). In fact,
if this is the case, we replace Zi,(0,M), described by (5), with

Zi,(m,M) =

{
1 with probability Yi−m

M−m , m ≤ Υi < Yi,

0 with probability 1− Yi−m
M−m , otherwise,

transform these variables to Ri,(m,M) = m + (M − m)Zi,(m,M), and estimate population
total tY analogously to (7) using the Horvitz-Thompson’s type estimator

tHT,R

(m,M) =
N

n

∑

i∈s

Ri,(m,M). (14)

It is easy to show that the variance of tHT,R

(m,M) is smaller than that of tHT,R

(0,M) , that is, by the

value N2m
n

(
M − tY

)
.

The immediate question arises of what happens if the interval [m,M ] is not set correctly.
Evidently, if some values of Yi are outside the interval [m,M ], then with probability 1 it
holds Zi,(m,M) = 0 if Yi < m and Zi,(m,M) = 1 if Yi > M . The bias of the suggested estimator
is equal to

∑

i∈U |Yi<m

(
Yi −m

)
+

∑

i∈U |Yi>M

(
Yi −M

)
. (15)

In practice, the bounds of the variable Y are often unknown. When choosing parame-
ters m and M , a researcher should carefully consider the trade-off between bias and privacy.
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While lower bound m affects mostly bias and is not very crucial to the privacy of respon-
dents, the choice of M affects both bias and privacy. Moreover, there is also a trade-off
between bias and variance of estimates; see the results of the simulations in Tables 2 – 4 in
the Annex. Therefore, a reasonable guess about the empirical quantiles of the characteristics
studied is vital for setting the values of m and M properly.

Let us discuss some advantages and disadvantages of our approach compared to the
other techniques suggested in the literature.

– It is simple; this fact increases respondents’ confidence and cooperation, and thus reduces
the estimation error.

– Respondents’ privacy is well protected, because they never report the true value of the
sensitive variable.

– It avoids the demanding task of designing a randomization device intended for masking
the surveyed variable.

– It enables to estimate the population total at an acceptable level of accuracy, see Sec-
tion 3 for details. Of course, what level is acceptable depends on the survey and selected
precision requirements. According to our simulations, standard errors of the estimators
described up to now are at most two times higher than those of HT-estimators, see
Tables 2 – 4.

– On the other hand, due to the need of a device/technique for generation random numbers,
some respondents may feel a lower degree of confidence in preserving their anonymity.

Finally, we find rather problematic any comparison of our approach with other methods
because their performance strongly depends on the choice of the randomizing device used.
In our opinion, it is tricky to design, e.g., a deck of cards for a continuous variable with a
high range, such as the income in the Czech Republic, and a reliable estimator of this type
with an acceptably small variance value would need an excessively large size.

2.2 Estimators using knowledge of Υ

A natural question arises as to whether we could improve the accuracy of the suggested
method. Thus, in what follows, we discuss the two modifications of the RRTs suggested
in Section 2.1 and their properties in the following subsections. The heuristics behind this
approach are based on the following observations. All techniques presented up to now have
assumed that the interviewer does not know the outcome of the randomization device leading
to the randomized response, such as the card drawn, the value of the pseudorandom number,
etc. It is plausible to ask what would happen if we also knew the outcome of that random
experiment on the one hand, while protecting respondents’ privacy on the other one. More
precisely: Can we modify the estimator and to increase its accuracy, that is, to decrease its

variance, if we also know the values of the generated pseudorandom number? We surmise that
it is feasible and suggest one possible way of reaching this goal. However, we point out that
the success of the suggested approach, to a considerable extent, depends on the statistician’s
insight into the problem.

Assume again that the studied sensitive variable Y is non-negative and bounded from
above, that is, 0 ≤ Y ≤ M . Each respondent carries out, independently of the others, a
random experiment generating a pseudorandom number Υ from the uniform distribution
on interval (0,M), and informs the interviewer of both its value and whether Υ < Y or not.
For example, the response is that the simulated number has been xxx (let say 45 000
CZK) and the respondent earns more/less. To distinguish from the situation described in
Section 2.1, we further assume that the corresponding random response is now described
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using a dichotomous random variable

Zi,α,(0,M) =

{
1− α+ 2α Υi

M , if Υi < Yi,

−α+ 2α Υi

M , otherwise,
0 ≤ α < 1, i = 1, . . . , n, (16)

where α is a tuning parameter. Its value is a priori set by the interviewer, is fixed and
unknown to the respondent. This proposal is a linear combination of our initial proposal
Zi,(0,M) given by (5) and 2Υi/M . Higher the value α, more weight is put on the term using
the pseudorandom number Υ . For α = 0 we have the initial method described in Section 2.1.
The rule for an optimal choice of α is given later in this section.

The response of the respondent to Zi,α,(0,M) is transformed not by the respondent, but
by the interviewer off-line. The discussion about the choice of α is postponed here and will
be done later.

Since P
(
Zi,α,(0,M) = 1− α+ 2α Υi

M

)
= P

(
Υi < Yi

)
, we have

E
(
Zi,α,(0,M)

)
=

1

M

∫ Yi

0

(
1− α+ 2α

u

M

)
du+

1

M

∫ M

Yi

(
− α+ 2α

u

M

)
du =

Yi
M

,

Var
(
Zi,α,(0,M)

)
=

1− 2α

M2
Yi
(
M − Yi

)
+

α2

3
.

Therefore, the random responses Zi,α,(0,M) are further transformed to Ri,α,(0,M) =
MZi,α,(0,M), and the desired estimator of the population total tY is constructed analo-
gously to (7) and (14). More precisely, we suggest using again the Horvitz-Thompson’s type
of estimator in the form

tHT,R

α,(0,M) =
N

n

∑

i∈s

Ri,α,(0,M). (17)

It is evident that E
(
Ri,α,(0,M)

)
= Yi, so the estimator (17) is unbiased. Moreover, the

contribution of randomization to its variance is

E p

(
Var q

(
tHT,R

α,(0,M)

∣∣ s
))

=
M2N2

n

∑

i∈U

[ 1

N

(
1− 2α

) Yi
M

(
1−

Yi
M

)
+

α2

3N

]
. (18)

An easy calculation shows that (18) has a global minimum at α = 3ΓY,M ∈ [0,3/4]. If
we set αopt = 3ΓY,M and substitute it back to (18), then the contribution of randomization
to the variance of (17) for this choice of α is

E p

(
Var q

(
tHT,R

αopt,(0,M)

∣∣ s
))

=
M2N2

n

∑

i∈U

[ (
1− 6ΓY,M

) 1

N

Yi
M

(
1−

Yi
M

)
+

3Γ 2
Y,M

N

]

=
M2N2

n
ΓY,M

(
1− 3ΓY,M

)
. (19)

If we compare (19) with (12), we see that the knowledge of pseudorandom numbers Υi and
the use of αopt considerably decrease the variability, of course, depending on the suggested
RRT. It is worth highlighting that our simulations summarized in Section 3 confirm these
findings.

The conclusion that the knowledge of Υ leads to a smaller variance of the estimator is
expected; see above. The reason is clear and is based on the well-known inverse relationship
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that exists between the disclosure of personal information and the efficiency of estimates,
that is, the more the privacy is jeopardized the lower the variance. For a discussion, see Chaud-
huri and Mukerjee (1988), among others. In our case, the assumption that the interviewer
knows Υ means that the privacy of the respondent is less protected and, consequently, we
get better estimates.

Parameter α should be set to its optimal value αopt = 3ΓY,M , where the mean relative
concentration measure ΓY,M is introduced in Section 2, Formula (9). If the interviewer has
some prior information about the mean µ and variance σ2 values for the theoretical distri-
bution of the surveyed variable Y , he/she should rather apply the asymptotic concentration
measure (11), which can be estimated using a plug-in moment estimator. More precisely,
the population mean tY should be replaced by µ, and the population variance S2

Y by σ2.
Since the population second moment Y 2 can be expressed as N−1

N S2
Y + t

2

Y , it is sufficient to
substitute µ and σ2 into this expression. Moreover, recall that the prior information is often
available for regular surveys in official statistics, such as EU-SILC, because in such a case
we can either use results from previous years updated by inflation, or we can rely on the
expert opinion. If no prior information is available, we recommend choosing small values of
α, such as 0.5.

Notice that if a nonnegative surveyed random variable Y is bounded not only from above
but also from below, that is, 0 < m ≤ Y ≤ M , we generate Υi from the uniform distribution
on the interval (m,M), modify Zi,α,(0,M) given by (16) to

Zi,α,(m,M) =

{
1− α+ 2α Υi−m

M−m , if Υi < Yi,

−α+ 2α Υi−m
M−m , otherwise,

0 ≤ α < 1,

transform Zi,α,(m,M) to Ri,α,(m,M) = m+(M −m)Zi,α,(m,M), and form an estimator of the
population total tY of the Horvitz-Thompson’s type, parallel to (17), as

tHT,R

α,(m,M) =
N

n

∑

i∈s

Ri,α,(m,M). (20)

Using analogous arguments as above, it is straightforward to show that E
(
Ri,α,(m,M)

)
= Yi,

so that the estimate (20) is again unbiased regardless of the value of the parameter α.
We must firmly emphasize that neither the information about the value of pseudorandom

number Υ nor the value α enables us to guess the exact value of the sensitive variable Y , ex-
cept for the case Y = M . In other words, knowing them does not intrude on the respondent’s
privacy.

The heuristics behind the proposed modification are the following:

– If the response is YES, then a high value of the pseudorandom number Υ implies a high
value of the studied variable Y , because Y > Υ , and these observations “considerably”
increase the value of the estimator.

– However, if the response is NO, then a low value of the pseudorandom number Υ implies
a low value of Y , because Y ≤ Υ , and these observations “considerably” decrease the
value of the estimator.

Unfortunately, in both situations, that is, when the value of the response is either (too) low
or (too) high, the respondent may be more prone to fabricate his/her response.

As we can see, Zi,α,(m,M) can occasionally attain negative values, which is an obvious
drawback. On the other hand, using a guess about the distribution of Y , it is possible to
estimate (at least roughly) the probability of such an event. For illustration, in the case of
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practical application of our approach described in Section 3, the probability of obtaining
a negative Zi,α,(m,M) is of the order 10−5, and during our extensive simulations, we never
met such a case. In this paper, we do not study the effect on bias and variance when setting
negative values to zero.

2.3 Estimator using switching questions

We emphasize that for some characteristics, such as the monthly income of a household or
alcohol consumption, it can be sensitive for respondents to report either high or low values.
This led us to modify the suggested RRT approach in the following way.

Assume that a nonnegative surveyed random variable Y is bounded both from below
and above, that is, 0 < m ≤ Y ≤ M . First, we set a proper fixed threshold T , m < T < M ,
unknown to the respondent. Second, we generate Υ from the uniform distribution on (m,M)
and, depending on whether the pseudorandom number Υ does or does not exceed this fixed
threshold T , we ask one of the following questions:

i. If Υ ≤ T : “Is the value of Y greater than Υ?”,
ii. If Υ > T : “Is the value of Y smaller or equal than Υ?”.

Third, for the ith respondent, we form a random variable

Zi,T,(m,M) =





1, if Υi ≤ T & Υi ≤ Yi,

0, if Υi ≤ T & Υi > Yi or Υi > T & Υi ≤ Yi,

−1, if Υi > T & Υi > Yi.

If we know both the response concerning the value of Y and the question asked, that is
whether Υi ≤ T or not, then it is easy to show that E

(
Zi,T,(m,M)

)
= (T+Yi−m−M)/(M−m).

This advises to transform Zi,T,(m,M) to Ri,T,(m,M) = (M−m)Zi,T,(m,M)+m+M−T , because

then E
(
Ri,T,(m,M)

)
= Yi. Thus, the Horvitz-Thompson’s type estimator of the population

total tY of the form

tHT,R

T,(m,M) =
N

n

∑

i∈s

Ri,T,(m,M). (21)

is evidently also unbiased.
As concern variance of Ri,T,(m,M), we must distinguish between Yi > T and the comple-

mentary inequality. After a bit of tedious calculation we get, as expected, that it is always
higher than the variance of Ri,(m,M). Worse still is the fact that negative values of Zi,T may
occur quite frequently, leading to negative values of the corresponding Ri,T,(m,M). Looking
at the results of our simulations, we observe that tHT,R

T,(m,M) can return inadmissibly low or
even negative values, which is a major drawback. Moreover, we cannot find the way how to
set optimal value of the threshold T minimizing Var

(
Ri,T,(m,M)

)
, being another drawback.

An unbiased estimator of the population mean tY can be constructed in parallel. On the
other hand, if we know only the response concerning the value of Y but not the question
asked, in this case it is not possible to construct an estimator of the population total tY ,
respectively of the population mean tY .

Thus, the seemingly appealing idea described in this section seems to be interesting from
a theoretical point of view. We cannot recommend it for practical use automatically without
prior information on the population studied, which is also illustrated by the simulations
presented in Section 3.
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2.4 Random number generation

In all RRTs, the choice of randomization device is probably the trickiest point. If we assume
direct face-to-face interviewing, the following points describe several possibilities that might
be used in our approach.

– We allow the respondent to select the random number according to some standard, e.g.
the European ISO 28640:2010(en) Standard ISO. We are convinced that the existence
of a standard can increase the credibility of the survey and willingness of respondents
to respond truthfully. The selected random number is then used according to the RRT
used.

– To those respondents who feel like “experts in the field of randomness”, the reviewer can
offer them the option to select a random number from the uniform distribution using
their own method.

– Another possibility is, for example, to use a large deck of cards, but it would require
additional calculations to find the bias of such an approach.

2.5 Open problems

There are several relevant related research issues, not treated in this paper due to its current
length. We aim to concentrate on them in subsequent papers. They include, but are not
limited to, the following points:

– To generalize suggested estimators to more complex sampling plans as cluster sam-
pling, two-stage sampling, stratified sampling, etc. Moreover, it has been repeatedly
emphasized during the discussions, e.g. after the presentation of our results, that the
median and other quantiles are important statistics for many applications, sometimes
even more important than the mean. Similarly, the question has been raised whether
parallel methodology could be used in any type of regression analysis combining it, e.g.,
with ideas from Antoch and Janssen (1989), Pfeffermann and Rao (2009a,b) or Tillé
(2020).

– To modify, where appropriate, suggested estimators to the case when pseudorandom
numbers are generated not from the uniform distribution, but from the distribution that
mimics the surveyed variable Y . To prepare a numerical study illustrating the effect
of the distribution from which we simulate random numbers on the on the possible
improvements in the performance of estimators. In the case of income covered in our
simulation example, the log-logistic or log-normal distribution might be used.

– To study more profoundly effects of tuning parameters on the bias, variance, and pri-
vacy jeopardy, as well as the trade-off among the parameters and pseudorandom numbers
generated from different distributions. To suggest rules of thumb for the choice of pa-
rameters m, M and α and to study optimal choice of parameters with respect to the
minimization of the mean square error.

– To derive unbiased estimators of variance and to study the impact on the corresponding
confidence intervals. To study the effect on bias and variance of the suggested procedures
when treating possible negative values as zeros.

– To compare our proposal with that of the unrelated question model suggested originally
in Greenberg (1971).

– To find approximate formulae for sample sizes with required margin of error.

3 SIMULATION STUDY

In many countries, income is recognized as private and (highly) sensitive information. Re-
spondents often refuse to respond at all or provide strongly biased responses. This in par-
ticular happens if their income is (very) high or (very) low. This leads us to assess the



2022

217

102 (2)STATISTIKA

performance of the proposed RRTs through a simulation study using Czech wage data from
the Average Earnings Information System (IPSV) of the Ministry of Labor and Social Affairs
of the Czech Republic.

Based on the extensive analysis of monthly wage statistics provided by IPSV for the
years 2004 – 2014, Vrabec and Marek (2016) recommended to model wages in the Czech
Republic using a three-parameter log-logistic distribution with the density

f(y; τ, σ, δ) =





τ
σ

(
y−δ
σ

)τ−1
(
1 +

(
y−δ
σ

)τ)−2
, y ≥ δ > 0, τ > 0, σ > 0,

0, otherwise,
(22)

where τ > 0 is a shape parameter, σ > 0 is a scale parameter and δ is a location parameter.
Vrabec and Marek (2016) also calculated the estimates of the parameters of (22) for the

data of 2nd quarter 2014 and obtained

τ̂ = 4.0379, σ̂ = 21,687 and δ̂ = 250. (23)

The estimates (23) are based on aggregated data (frequencies by wage intervals with constant
width 100 CZK) of roughly 2.1 × 106 observations, covering practically half of the overall
relevant population. The corresponding estimated average monthly income is 24,290 CZK
(approximately 950 EUR).

The probability histogram of the data with bin width 500 (CZK), and density of the log-
logistic distribution (22) with the unknown parameters replaced by their estimates (23), are
presented in Figure 1. In addition to that, the corresponding sample distribution function
is presented in Figure 2. Both the histogram and the sample distribution function were
constructed from the same aggregated data from the 2nd quarter 2014 used for estimation
of parameters of the model. Point out that all calculation and simulations were conducted
by the statistical freeware R, version 3.5.1, see R Core Team (2021).

It is interesting to look at both the lower and upper sample quantiles of the data used.
While 7 000 CZK corresponds to the 0.0003 sample quantile, 8 000 CZK corresponds to the
0.01 sample quantile, whis is the reason why we set m = 7000. Analogously, 40 000 CZK
corresponds to the 0.91 sample quantile, 60 000 CZK to the 0.97 sample quantile and, finally,
80 000 CZK to the 0.98 sample quantile, see Figure 2.

It is obvious from Figure 1 that the original data are highly skewed. Therefore, it is
not surprising that the mean relative concentration measure ΓY,M = 0.198 is close to its
attainable maximum, so that the estimator tHT,R

α,(m,M) based on the knowledge of Υi’s and
“almost-optimal” choice of the parameter α ≈ 3ΓY,M should have smaller variance than
tHT,R

(m,M) (corresponding to α = 0). Moreover, it follows from (4) that the variance of the esti-
mators using the suggested RRTs will be higher than for the Horvitz-Thompson’s estimator
based on the nonrandomized data. All this is confirmed by our simulations, compare the
results of Tables 2 – 4.

Neither the real population nor the real sample is available to us, because files with
microdata from ISPV survey are not available to researchers. Therefore, the populations U
are generated using the model wage distribution (log-logistic). More precisely, 1000 replica-
tions of populations sized N = 200, or N = 400, are simulated from model (22), in which
the unknown parameters have been replaced with their estimates (23), using the package
flexsurv, see Jackson (2016). Let us point out that the population sizes = 200 and N = 400
are commonly used sizes of a stratum in business statistics or surveyed community (village,
group of students, etc.). It is worth to emphasize that the simulation results virtually do not
change after 100 replications of the population; the differences begin at the third significant
digit.



ANALYSES

218

Moreover, 1000 replications from the log-logistic distribution are generated using the
package flexsurv, see Jackson (2016). Point out that the simulation results virtually do not
change after 100 replications of the population; the differences begin at the third significant
digit. All simulations and calculations are conducted by statistical freeware R, version 3.5.1,
see R Core Team (2021).

From each replication of the population, we draw, without replacement, 1000 random
samples of the size n = 20, or n = 50. Such sample sizes are standard for separate strata
in business sampling surveys, and also in the social statistical surveys, such as the EU
Statistics of Income Living Condition. Let us take a closer look at average sample size per
stratum in more detail. In such a survey, for a medium sized country like the Czech Republic
with a population of 107 inhabitants and approximately 4.3 · 106 households, the samples
approximately include 9 500 households surveyed in a two-dimensional stratification (region
and size of municipality), giving 78× 4 = 312 strata. The average sample size is then about
30 per stratum. In EU-SILC, detailed results are presented for eight income groups, leading
on average to the population size of approximatelyN = 1.25 ·106 inhabitants per one income
group. The setting of the simulation was based on the real sample and population sizes of the
EU-SILC of a medium size EU country. For a more detailed description of the stratification,
strata, sample sizes, and sampling design, see GESIS (2016).

For each sample, both tY and tY are estimated using the techniques described in Sec-
tion 2. Estimates of the total mean values, instead of population totals, are presented to
enable a more easy comparison between the results obtained for populations with different
sizes N and different sample sizes n.

In simulations, we are especially interested in the impact of “tuning parameters”m,M,T,

α and αopt on estimates. Taking into account the type and nature of the data that we
simulate, we set the parameters as described in Table 1. The values of αopt were set using
the formulae for the optimal variance described in Section 2. Other parameters were chosen
with regard to our experience, in particular, the monthly salary that can be perceived to be
high. Since practically all available data are larger than 7 000 CZK, we set the lower bound
of the interval for generating pseudorandom numbers Υi to m = 7000.

The results are summarized4 in Tables 2 – 4 and in Figure 3 – 5. They show that for larger
population size N and larger sample sizes n the accuracy improves substantially. The original
proposal without knowledge of pseudorandom numbers seems to be also promising for real
life applications. Even the method of switching questions might be applicable for large
samples from large populations if prior information is available. However, more simulations
using different shapes of population distributions are needed to support these hypotheses.

The reason for the lower standard deviation of t
HT,R

α,(m,M), and especially t
HT,R

αopt,(m,M), com-

pared to t
HT,R

(m,M) and t
HT,R

T,(m,M) is that these estimators efficiently use the information on the
generated numbers of Υ . Recall that we used the moment plug-in estimate for the optimal
value of α.

As expected, the values of variance of the suggested estimators are higher than those
of Horvitz-Thompson’s estimator based on the non-randomized data. The precision of our
basic proposal is practically acceptable because, according to simulations, the corresponding
sample standard deviation of the estimates increased by a mere 60% in comparison with
the Horvitz-Thompson estimate for M = 60 000. This result is quite reasonable, taking
into account that Y is a very sensitive variable and high nonresponse (even 50% and more

4In Tables 2 – 4 both the sample averages (means) and sample standard deviation (sd) of the estimates
from the simulations are presented. For simplicity, we omit “HT” in the descriptions of the estimators
analyzed in all figures and tables because all the estimators we compare here are of the Horvitz –
Thompson’s type.
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in everyday practice) for direct questioning. However, note that the modification using
knowledge of the values of Υi leads to a substantial reduction in variance. Thus, while mildly
relaxing respondents’ privacy on the one hand but still keeping secret the true response
because the true value of the sensitive variable is never reported, this modification provides
estimates whose precision is comparable with directly surveying under zero nonresponse. On
the other hand, the high variability of the estimates, even the presence of negative estimates
for the mean wages, shows that the modification of the switching questions described in
Section 2.3 is only a theoretical exercise and cannot be recommended for practical use. Its
improvement remains an open question.

Comparing in all tables the simulation results for optimal value αopt of the parameter α
and fixed values α = 0.75, we see that the mean has practically not changed; however, the
expected decrease occurs in the variability of the estimate. This decrease of approximately
9% of the standard deviation (sd) shows that it pays “to tune up” the procedure and its
parameters according to the given problem and available data.

Both the results of Section 2.1 and the simulations show that the variance of the esti-
mators can be greatly reduced by choice of bounds m and M . We see that for low values
of the upper bound M = 40 000 the proposed estimators are competitive even with the
Horvitz-Thompson estimator. It follows from (15) that approximately unbiased estimators
with low variance can be constructed if we use prior information on population quantiles for
choice of bounds m and M . The optimal choice of bounds with respect to the minimization
of the mean square error is a field of further research.

CONCLUSIONS

The paper introduces a new randomized response model and two variants of it, intended
to gather information on a (positive) sensitive quantitative variable and to estimate the
population total (population mean). The idea underlying the proposal is seemingly very
easy and, unlike many scrambled response methods present in the literature, does not re-
quire demanding arithmetic operations from the respondents nor the use of complicated
randomization devices.

It possesses three attractive properties, namely:

1. Although a quantitative estimate is the final end, the respondent is only asked
for a qualitative response.

2. It is simple to use.
3. It provides a high level of anonymity to the respondent.

In the first model, respondents are first asked to generate a random number (a sort
of random threshold) from a continuous uniform distribution. Then, without revealing the
generated number to the interviewer, the survey participants are asked to declare whether
the true value of the sensitive variable is greater than the generated number. Under this
model, the privacy of the respondents is completely protected. The two variants of the model
discuss the case where the generated number is also known to the interviewer, and therefore
privacy is less protected. Consequently, the use of the two variants in real analyses is not
recommended, since they are prone to produce misreporting and untruthful response. They
have a value only from a theoretical point of view.

A disadvantage of the discussed method may, for some respondents, be a feeling of
infringement on their privacy due to an extrinsic device/technique being used for generating
random numbers. This problem is mainly psychological in nature and can, at least partially,
be resolved by a proper explanation of the approach of the interviewer. Unfortunately,
all currently used RRT procedures suffer, to some extent, from the same problem, see the
thorough discussion in Chaudhuri (2017), Chaudhuri and Christofides (2013), among others.
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For all suggested RRT procedures, we show their unbiasedness and derive the corre-
sponding variance for the Horvitz-Thompson’s type estimator under simple random sam-
pling without replacement. The optimal values of the tuning parameters that enable us to
minimize the variance of the suggested procedures are also discussed.

As a technical tool, two auxiliary measures are proposed. With the aid of them we can
explain why and especially how the suggested RRTs increase the variance of the estimators
of tY and tY for symmetrical distributions, distributions closely concentrated around their
centers, or uniform distribution.
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ANNEX

Figure 1 Probability histogram of monthly wages in the Czech Republic in the 2nd quarter of 2014,

and the density (in red) of approximating model (22) with the parameters estimated by (23)

Source: Own construction

Figure 2 The sample distribution function of monthly wages in the Czech Republic in the 2nd

quarter of 2014

Source: Own construction

Table 1 Choice of tuning parameters for the simulations

m M T α αopt

7 000 40 000 30 000 0.75 0.72

7 000 60 000 45 000 0.75 0.59

7 000 80 000 45 000 0.75 0.52

Source: Own construction
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Figure 3 Behavior of considered estimators applied to different population and sample sizes

Parameters of the simulation, population N and sample sizes n : (m,M) = (7 000; 40 000),
T = 30 000, α = 0.75 and αopt = 0.72. To increase readability, we use t

HT,R

α , t
HT,R

αopt
and tHT,R

T

instead of t
HT,R

α,(m,M), t
HT,R

αopt,(m,M) and tHT,R

T,(m,M) in description of boxplots.

Source: Own construction
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Figure 4 Behavior of considered estimators applied to different population and sample sizes

Parameters of the simulation, population N and sample sizes n : (m,M) = (7 000; 60 000),
T = 45 000, α = 0.75 and αopt = 0.59. To increase readability, we use t

HT,R

α , t
HT,R

αopt
and tHT,R

T

instead of t
HT,R

α,(m,M), t
HT,R

αopt,(m,M) and tHT,R

T,(m,M) in description of boxplots.

Source: Own construction
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Figure 5 Behavior of considered estimators applied to different population and sample sizes

Parameters of the simulation, population N and sample sizes n : (m,M) = (7 000; 80 000),
T = 45 000, α = 0.75 and αopt = 0.52. To increase readability, we use t

HT,R

α , t
HT,R

αopt
and tHT,R

T

instead of t
HT,R

α,(m,M), t
HT,R

αopt,(m,M) and tHT,R

T,(m,M) in description of boxplots.

Source: Own construction
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Table 2 Numerical results of simulations

N = 200 N = 400

Estimator n = 20 n = 50 n = 20 n = 50

t
HT

s mean 24.270 24.272 24.287 24.288

sd 2.782 1.757 2.773 1.758

t
HT,R

(m,M) mean 23.189 23.192 23.203 23.205

sd 3.687 2.333 3.690 2.336

t
HT,R

α,(m,M) mean 23.192 23.194 23.206 23.207

sd 3.000 1.897 3.001 1.902

t
HT,R

αopt,(m,M) mean 23.192 23.194 23.206 23.207

sd 2.965 1.875 2.966 1.880

t
HT,R

T,(m,M) mean 23.185 23.189 23.199 23.202

sd 6.066 3.836 6.068 3.837

The mean estimated salaries (in 103 CZK) and the corresponding sample standard deviations
(in 103 CZK) for different population sizes N and sample sizes n. Random numbers Υi are
generated from the uniform distribution on the interval [m,M ] = [7 000; 40 000], T = 30 000,
α = 0.75, αopt = 0.72, 1000 simulated populations, 1000 replications of each. Means and
standard deviations (sd) were averaged over 1000× 1000 random samples.

Table 3 Numerical results of simulations

N = 200 N = 400

Estimator n = 20 n = 50 n = 20 n = 50

t
HT

s mean 24.297 24.301 24.288 24.290

sd 2.773 1.758 2.813 1.779

t
HT,R

(m,M) mean 23.983 23.984 23.965 23.974

sd 5.530 3.501 5.529 3.495

t
HT,R

α,(m,M) mean 23.974 23.976 23.956 23.965

sd 4.401 2.786 4.398 2.780

t
HT,R

αopt,(m,M) mean 23.976 23.977 23.958 23.967

sd 4.164 2.637 4.161 2.631

t
HT,R

T,(m,M) mean 23.991 23.992 23.973 23.982

sd 9.066 5.729 9.067 5.726

The mean estimated salaries (in 103 CZK) and the corresponding standard deviations (in
103 CZK) for different population sizes N and sample sizes n. Random numbers Υi are
generated from the uniform distribution on the interval [m,M ] = [7 000; 60 000], T = 45 000,
α = 0.75, αopt = 0.59, 1000 simulated populations, 1000 replications of each. Means and
standard deviations (sd) were averaged over 1000× 1000 random samples.
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Table 4 Numerical results of simulations

N = 200 N = 400

Estimator n = 20 n = 50 n = 20 n = 50

t
HT

s mean 24.275 24.273 24.299 24.299

sd 2.765 1.739 2.753 1.737

t
HT,R

(m,M) mean 24.138 24.140 24.158 24.168

sd 6.911 4.372 6.921 4.378

t
HT,R

α,(m,M) mean 24.145 24.146 24.165 24.174

sd 5.962 3.770 5.950 3.767

t
HT,R

αopt,(m,M) mean 24.143 24.145 24.163 24.173

sd 5.404 3.417 5.398 3.417

t
HT,R

T,(m,M) mean 24.136 24.137 24.156 24.165

sd 13.018 8.236 13.036 8.244

Numerical results of simulations. The mean estimated salaries (in 103 CZK) and the cor-
responding standard deviations (in 103 CZK) for different population sizes N and sample
sizes n. Random numbers Υi are generated from the uniform distribution on the interval
[m,M ] = [7 000; 80 000], T = 45 000, α = 0.75, αopt = 0.52, 1000 simulated populations, 1000
replications of each. Means and standard deviations (sd) were averaged over 1000 × 1000
random samples.

Source of Tables 2 – 4: Own construction




