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Abstract

Benford's Law (sometimes also called Benford's Distribution or Benford's Test) is one of the possible tools for 
verifi cation of a data structure in a given fi le regarding the relative frequencies of occurrence of the fi rst (or 
second, etc.) digit from the left . If it is used as a goodness-of-fi t test on sample data, there are usually no prob-
lems with its interpretation. However, certain factual questions arise in connection with validity of Benford's 
Law in large data sets in governmental statistics; such questions should be resolved before the law is used. 
In this paper we discuss the application potential of Benford's Law when working with extensive data sets in 
the areas of economic and social statistics.
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INTRODUCTION

Correctness and indisputability of macroeconomic data is one of the basic principles in governmental 
statistics. Th ese attributes are achieved by the use of verifi ed methods to collect and process data, attested 
procedures, and balance computations with the aid of all available sources of information. Th e national 
accounts system is one of the “tools” we use for verifying the meaningfulness and cohesion of the govern-
mental statistics. National accounts is a system of inter-related macroeconomic statistical data, arranged 
in the form of integrated economic accounts. We can compare this system with a crossword puzzle in 
which indices stand for letters. In other words, each entry is added to the total index value in the row, and 
one of diff erent indices in the column, similar to letters in a crossword puzzle being parts to “down” and 
“across” words. Th is arrangement of data ensures that all items are inter-related and balanced – nothing is 
lost and nothing is used to excess. Without disputing the national accounts of any country, it is clear that 
a balanced inter-related system of data can be created from fi ctitious or even incorrect data items. Other 
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tools are suitable for verifying that the items of national accounts are indeed correct. In addition to the 
usual factual and logical checks on the data sources and procedures, such verifi cation can be supported 
by certain formal tools. Benford’s Distribution is one of them.

1 WHAT IS BENFORD’S LAW?

Th e substance of Benford’s Law can easily be expressed in words: in a given set of data, the probability 
of occurrence as the fi rst digit from the left  is diff erent for each of the digits 1, 2, ... 9. Numbers starting 
with one occur more oft en than those starting with two, which are in turn more frequent than those 
starting with three, etc., and numbers starting with nine are the least frequent ones. Th is observation 
is hard to believe at fi rst sight. However, its validity has been empirically confi rmed (fi rst in 1881, and 
then again in 1938). Th anks to a new mathematical approach developed at the end of the 20th century, 
this law found its way to be included into the theory of probability. Many a time, successful applications, 
including testing mathematical models and computer designs, as well as error detection in accounting, 
have indicated its validity.

1.1 Historical Note

By the irony of fate, it was not Frank Benford who assisted at the birth of the distribution that is now 
called Benford’s. Neither was he the fi rst who tried to prove it mathematically. As a matter of fact, Simon 
Newcomb in the late 19th century fi rst defi ned a distribution governing the occurrence of numbers with 
a given digit as the fi rst one from the left . R. A. Raimi and T. P. Hill tried to put forth a mathematical 
proof of this specifi c law in the 1990s.

Curiosity and imagination, besides knowledge and experience, undoubtedly play an important role 
in scientifi c discoveries. Th is was also the case of the distribution (law) later called Benford’s. American 
mathematician and astronomer Simon Newcomb noticed in a library that the beginning pages in loga-
rithm table books are much more worn out than the rest. On the basis of this observation he realised 
that students much more oft en look up logarithms of numbers beginning with one than those begin-
ning with two, the latter more oft en than those beginning with three, etc., and from that he deduced: the 
probability of occurrence for numbers beginning with one is largest, and larger than that for numbers 
beginning with two, etc. Empirically he derived4  the following formula for the probability of occurrence 
for numbers in which digit d stands the fi rst from the left :

P(d) =                         ,  for d = 1, 2, …, 9.      (1)

Th is rule means that the probability of occurrence of a number beginning with one is 0.3010, beginning 
with two 0.1761, etc., to the probability of a number beginning with nine, which is 0.0458. He also derived 
probabilities corresponding to the digit second from the left  (now, of course, zero has to be included); 
mutual diff erences are signifi cantly lower for digits 0, 1, …, 9 at the second position: the probability of 
zero is 0.1197, and that of nine is 0.0850).5

Nowadays Newcomb’s paper has hundreds of citations, but in its time it passed practically without notice 
and more or less fell into oblivion. Many years later American physicist Frank Benford also noticed the 
irregular wear of logarithmic table books’ pages, and derived the same logarithmic formula for the fi rst 
and second digits from the left . In 1938 he published his conclusions based on studying a large number 
of data sets for diff erent areas (hydrology, chemistry, but also baseball or daily press – Benford, 1938). 
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4    Cf. Newcomb (1881).
5    Cf. Table 1.
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Unlike Newcomb’s paper, Frank Benford’s met certain attention, perhaps thanks to recognition of his 
name in physics. Newcomb had been forgotten by then and the logarithmic relationship for occurrence 
of the fi rst (and second) digit from the left  was “christened” Benford’s.

Th e wider use of Benford’s Law in the second half of the 20th century brought about a number of ques-
tions concerning its validity. Th ere were data sets (from natural sciences, economics, but also everyday 
life) in which Benford’s Law was valid, but it was always possible to fi nd situations for its rejection (phone 
numbers from a certain area, shoe or cloth sizes, etc.). Naturally, a question arose whether Benford’s Law 
can or cannot be proved mathematically. In particular, T. P. Hill (Hill, 1995a; Hill, 1995b; and Hill, 1998), 
and R. A. Raimi (Raimi, 1969a; Raimi, 1969b; and Raimi, 1976) tried to fi nd such a proof, but no strict 
mathematical proof was found.6 If nothing else, their theoretical eff orts led to an approximate formula-
tion of Benford’s Law validity: if we take random samples from arbitrary distributions, the collection of 
these random samples approximately obey the Benford’s Law.7

1.2 Theoretical basis

Formula (1), fi rst derived by Newcomb and later again by Benford, has a more general validity; or rather, 
it can be adapted into a form which defi nes occurrence of any digit at the second, third, etc. positions. In 
this connection, however, we have to ask whether such occurrence does or does not depend on occurrence 
of preceding digit(s) from the left , or is conditional with respect to such occurrence. In other words, in 
the former case we deal with probabilities of independent events, while in the latter conditional prob-
abilities are due to be used.

Occurrence of a digit from 1, 2, …, 9 at the fi rst position from the left  is governed by Formula (1), 
but occurrence of a digit from 0, 1, …, 9 at the second position from the left  (on assumption that it is 
independent of occurrence of a particular digit at the fi rst position from the left ) is given as

                                                   ,        for d = 0, 1, …, 9. (2)

Regarding independent occurrences of digits from 0, 1, …, 9 at the third and following positions, 
the last formula can be generalised:

                                                                                ,        for dk = 0, 1, …, 9.  (3)

and the mutual diff erences between probabilities of occurrence of a particular digit get smaller already at 
the second position from the left ; and starting at the fi ft h position (independent of the preceding ones) 
Benford’s Law approaches the uniform multinomial distribution. Table 1 shows the changes in the prob-
ability values for independent occurrence of digits 0, 1, …, 9 at the fi rst to fi ft h positions from the left .

Th e results presented above imply that, starting from the third position from the left , diff erences in 
probability values are very small and only occurrence of digits at the fi rst and second positions from 
the left  are interesting from the viewpoint of practical applications.

6    Perhaps the best characterisation is that by R. A. Raimi in the conclusion of his paper (Raimi, 1969b, p. 347). Referring 
to the validity of Benford's Law for addresses of 5 000 people from a "Who is Who" publication, he says: "Why should 
the street addresses of a thousand famous men obey the logarithm law? I know no answer to this question".

7  Cf. Hill (1998) and Raimi (1969b).
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Another situation arises when probability of occurrence of a digit from 0, 1, …, 9 at the second posi-
tion from the left  is conditional on occurrence of a particular digit from 1, 2, …, 9 at the fi rst position 
from the left . Conditional probability of occurrence for d2 at the second position from the left  on the 
condition that the fi rst digit from the left  is d1 equals

                                                         ,        for d1 = 1, 2, …, 9, and for d2 = 0, 1, …, 9. (4)

For example, probability of “2” occurring at the second position on condition of “3” being the fi rst 
digit from the left  is

                                                                                              .

Values of conditional probability for pairs of digits calculated with the aid of Formula (4) are shown 
in Table 2.

Source: Authors' own calculations

                    j
    d               

1 2 3 4 5

0 x 0.1197 0.1018 0.1002 0.1000

1 0.3010 0.1139 0.1014 0.1001 0.1000

2 0.1761 0.1088 0.1010 0.1001 0.1000

3 0.1249 0.1043 0.1006 0.1001 0.1000

4 0.0969 0.1003 0.1002 0.1000 0.1000

5 0.0792 0.0967 0.0998 0.1000 0.1000

6 0.0669 0.0934 0.0994 0.0999 0.1000

7 0.0580 0.0904 0.0990 0.0999 0.1000

8 0.0512 0.0876 0.0986 0.0999 0.1000

9 0.0458 0.0850 0.0983 0.0998 0.1000

Table 1  Probability of occurrence for digit d at the jth position from the left

d1 (fi rst 

digit 

from 

the left)

d2 (second digit from the left)

0 1 2 3 4 5 6 7 8 9

1 0.1375 0.1255 0.1155 0.1069 0.0995 0.0931 0.0875 0.0825 0.0780 0.0740

2 0.1203 0.1147 0.1096 0.1050 0.1007 0.0967 0.0931 0.0897 0.0865 0.0836

3 0.1140 0.1104 0.1070 0.1038 0.1008 0.0979 0.0952 0.0927 0.0903 0.0880

4 0.1107 0.1080 0.1055 0.1030 0.1007 0.0985 0.0964 0.0943 0.0924 0.0905

5 0.1086 0.1065 0.1045 0.1025 0.1006 0.0988 0.0971 0.0954 0.0938 0.0922

6 0.1072 0.1055 0.1038 0.1022 0.1006 0.0990 0.0976 0.0961 0.0947 0.0933

7 0.1062 0.1047 0.1033 0.1019 0.1005 0.0992 0.0979 0.0966 0.0954 0.0942

8 0.1055 0.1042 0.1029 0.1017 0.1005 0.0993 0.0982 0.0970 0.0959 0.0949

9 0.1049 0.1037 0.1026 0.1015 0.1004 0.0994 0.0984 0.0973 0.0964 0.0954

Table 2  Conditional probability values of occurrence for d2 on condition d1
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Th e relationships considered above for Benford’s Law are valid for arbitrary data sets and are invar-
iant with respect to the change of radix base or units of measurement. Equivalently expressed, data sets 
governed by Benford’s Law will remain governed even if expressed in a base other than decimal, or in 
other units of measurement (physical, currency, etc.) or if the original data items are all multiplied by 
an arbitrary constant. Th is fact implies that any arithmetical operations carried out on data governed by 
Benford’s Law will again be governed by the same law.8

Th e fact that we have at our disposal Benford’s Distribution of the fi rst (and second) digit from the 
left 9 provides us with an option to check any data set for a fi t to the data structure governed by Benford’s 
Law. Th e best choice for such a procedure is the 2 goodness-of-fi t test, which can be used as a standard 
hypothesis test if the respective data set comes from a random sample. Th e tested hypothesis, denoted 
by H0, asserts the fi t of the empirical distribution with Benford’s Law, and the alternative hypothesis H1 
claims the contrary. Th e test criterion is the statistics

                                  ,   (5)

which has, under validity of H0, approximate distribution 2 [8], and 
where πd – theoretical relative frequencies under Benford’s “Law;

 pd – empirical relative frequencies; and
 n  – sample size.
Th e critical values are the respective quantiles of 2 [8]; on a 5% signifi cance level, the 95% quantile 

will be used, that is, 2
0.95 [8] = 15.5. For a test of the fi t at the second position the procedure would be 

similar, but there are ten groups and nine degrees of freedom. If the underlying sample is small, we also 
have to respect the condition of a suffi  cient frequency count in each “cell” (nπd  5).

Another option for testing the fi t of sample data to Benford’s Law is the use of Z-statistics; this proce-
dure again verifi es the fi t between empirical and theoretical frequencies, but separately for each digit, 
not as a whole. Under hypothesis H0, the following Z-statistics has approximate normal distribution

                                             ,      (6)

where πd – theoretical relative frequencies under Benford’s “Law;
 pd – empirical relative frequencies; and
 n  – sample size.
Th e critical value (in this case, separate for each digit) is the respective quantile u1– α/2 of the normed 

normal distribution. On a 5% signifi cance level, we get u0.975 = 1.96. Kossovsky (2015) recommends that 
the two-tailed test should always be used, i.e., the critical value given by quantile u1– α/2, because absolute 
value stands in the numerator in Formula (6), and therefore it is not necessary to distinguish between 
directions of the deviation from Benford’s Law (it means that both lower and higher relative frequencies 
than the theoretical value under Benford’s Law admit the same interpretation).

Although both tests lead to conclusions that are intuitively similar, there is a diff erence between them. 
Namely, the former (G-statistics) comprehensively assesses the validity of Benford’s Law for a given set 

8    Cf., e.g., Watrin et al. (2008).
9    For the above-mentioned reasons we are not going to consider more positions from the left .
10  Cf. Kossovsky (2015).
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of fi rst digits (possibly second ones as well). Th e particular digit for which the deviation from Benford’s 
Law is the highest must be looked up among values

                    ,        for d = 1, 2, …, 9, or  d = 0, 1, …, 9.

Th e second approach (Zd-statistics) evaluates the deviation for each individual fi rst digit indepen-
dently, and it is immediately obvious which fi rst digits do or do not comply with Benford’s Law. Th e same 
considerations of course apply to testing the fi t of empirical data to Benford’s Law for the second digit 
from the left .

Mean Absolute Diff erence (MAD) is also oft en used to test the fi t to Benford’s Law. Th is approach, 
however, goes beyond standard hypothesis testing because the distribution of the MAD statistics is 
unknown. Th e mean absolute diff erence value (for the case of the fi rst digit from the left )11 is

9

9

1




 i

ddp
MAD


,         (7)

where πd – theoretical relative frequencies under Benford’s “Law;
 pd – empirical relative frequencies.
Since we do not know the distribution of the MAD statistics, empirical threshold values12 are used for 

evaluation the outcome for MAD – cf. Table 3.

11  For testing the second digit from the left , the calculation is similar but there are ten groups.
12  Cf. Nigrini (2011).
13  Th e fact that validity of Benford's Law has not been proved mathematically is also a frequent topic.
14  From among the most recent ones, we refer to Miller (2015) – it is a very good presentation of applications and experi-

ence with them, especially in the areas of economy, accounting, and also natural sciences.

Table 3  Degrees of fi t for MAD statistics

Source: Nigrini (2011)

 
d

ddp

 2

MAD value
Degree of fi t between empirical and theoretical 

(Benford’s) distributions

0.000 – 0.006 Close fi t

0.006 – 0.012 Acceptable fi t

0.012 – 0.015 Loose fi t

0.015 plus No fi t

Unlike the previous approaches, which are classical statistical inference instances, the MAD statistics 
is more suitable for verifying the fi t in a data set not considered a random sample because all data items 
in the given area are included. Th is is oft en the case when checking extensive sets in corporate accounting 
and macroeconomic data.

2 PRACTICAL APPLICATIONS

Th e simplicity and, undoubtedly, a certain degree of mystery of Benford’s Law13 have led to a large volume 
of literature on this subject.14 Most oft en, discussions appear about the use of Benford’s Law in checking 
accounting and macroeconomic data.
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Using Benford’s Law for verifi cation of accounting data correctness is one of the approaches that have 
recently been oft en used in fi nancial auditing and (tax) inspections. However, we have to realise that this 
approach never will and never can substitute for professional, comprehensive and extensive eff ort carried 
out by auditors and inspectors – it can only help them fi nd the “weak points”. If an accounting data set 
deviates from Benford’s Law, this mere fact is not evidence of data falsifi cation or improper manipula-
tions. It is just an indicator of where attention of auditors/inspectors should be focused. If there is such 
a deviation, the total fi t according to (5) is usually not assessed, but deviations of individual digits are 
evaluated to show where the attention should be focused. In other words, tests of fi t to Benford’s Law should 
only be employed in auditing and inspections as an auxiliary tool in addition to standard procedures, or 
as the first step in searching for possible instances of data falsification. All authors who deal with 
the use of Benford’s Law in auditing, taxes and inspections agree on the statement cited in the preceding 
sentence.15

Benford’s Law has a similar application potential in the area of macroeconomic data. Literature in 
this area is substantially less extensive than in the previous case, but interesting approaches and results 
can even be found here. Undoubtedly the best-known contribution to the discussion on Benford’s Law 
is that of Rauch et al. (2011). Th e authors of that paper focus on verifi cation of Benford’s Law validity 
for selected data of national accounts in  27 member states of the European Union in the period from 
1999 to 2009 (data in the ESA 1995 methodology). Aware of the problem implied by the large power 
of a goodness-of-fi t test applied to extensive data sets, they decided for a “descriptive” approach based 
on ordering the member states according to their values of the total deviation from Benford’s Law (5). 
Th e position of each state on this scale may, in their opinion, be of assistance to Eurostat – to what 
extent and in what direction Eurostat’s verifi cation procedures should be used. Th eir analysis (based 
on relative frequencies of occurrence for the fi rst digit from the left ) showed that the least trustworthy, 
from the Benford’s Law viewpoint (more exactly, the average value of the G-statistics) were the national 
accounts data of not only Greece, but also of Belgium, Romania, and Latvia. On the other hand, the best 
fi t to Benford’s Law was identifi ed for national accounts data of Luxembourg, Portugal, the Netherlands, 
Hungary, Poland, and the Czech Republic.

Th ose excellent results of the Czech Republic inspired us to verify the validity of Benford’s Law on 
new data of national accounts processed and published by the Czech Statistical Offi  ce according to the 
ESA 2010. Our ambition is not to prove the validity of Benford’s Law in a wider context of national 
accounts time series, in which even more favourable results would certainly be achieved, but to illustrate 
the possibilities of this tool in checking data quality. Th e data set we tested for fi t to Benford’s Law for 
the fi rst and second digits from the left  was that of national accounts data of the Czech Republic in 2013 
(the preliminary report for 2013). Altogether there were 2 817 digits at the fi rst position from the left , 
and 2 729 digits at the second position. Statistics (5), (6), and (7) are used for testing the fi t. Th e results 
for the fi rst digit from the left  are shown in Table 4.

15  Cf., e.g., Carslaw (1988), Nigrini (2005), Nigrini (1996), Guan et al. (2006), Niskanen and Keloharju (2000) or Watrin 
et al. (2008).

16  Cf., e.g., Nye and Moul (2007) or Gonzales-Garcia and Pastor (2009).
17  Generally, data sets connected with the Stability and Growth Pact were considered. Altogether there were 36 691 nume-

rals in 297 sets.
18  Nonetheless, the problem with Greece's national accounts had been known before. As early as in 2002, Eurostat twice re-

jected data of the general government in Greece due to untrustworthiness, and again in 2004 (cf. Report by Eurostat on the 
Revision of the Greek Government Defi cit and Debt Figures – <http://ec.europa.eu/eurostat/documents/4187653/5765001/
GREECE-EN.PDF>).

19 Data of the Czech Republic only showed a signifi cant deviation from Benford's Law in 2002, when the value of the test 
criterion (5) exceeded the critical value of 15.5.
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The entries in Table 4 clearly show that, regarding the first digit from the left, the data of the 
national accounts of the Czech Republic in 2013 comply with Benford’s Law for all three characteris-
tics. In the goodness-of-fi t test we obtain statistics G = 13.00, which is smaller than the critical value of 
2

0.95 [8] = 15.5; hence the hypothesis is accepted that the empirical and theoretical (Benford’s) distribu-
tions are identical. Th e values of the Zd-statistics for each of the digits are all smaller than the critical 
values of the normed normal distribution (u0.975 = 1.96). We can therefore observe that, for none of the 
digits, the diff erences between the empirical and theoretical frequencies are deemed statistically signifi -
cant. Th e MAD characteristic also indicates a good fi t (cf. Table 3) of the data structure of the national 
accounts of the Czech Republic in 2013 to Benford’s Law. Figure 1 illustrates the fi r between the empirical 
frequencies and theoretical probabilities for the fi rst digit from the left .

First digit from 

the left

Absolute 

frequency

nd

Relative 

frequency

pd

Probability

πd
G Zd MAD

1 858 0.305 0.301 0.000042 0.390146 0.004

2 517 0.184 0.176 0.000314 1.011605 0.007

3 384 0.136 0.125 0.001036 1.797649 0.011

4 262 0.093 0.097 0.000157 0.668436 0.004

5 198 0.070 0.079 0.000999 1.713259 0.009

6 181 0.064 0.067 0.000108 0.534417 0.003

7 180 0.064 0.058 0.000601 1.300798 0.006

8 124 0.044 0.051 0.000995 1.675934 0.007

9 113 0.040 0.046 0.000696 1.388463 0.006

Total 2 817 1.000 1.000 13.004949 x 0.006

Table 4  Fit to Benford's Law – fi rst digit from the left

Source: <www.czso.cz>, authors' own calculations

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

1 2 3 4 5 6 7 8 9

First digit from the left

empirical theoretical

Figure 1  Fit to Benford's Law – fi rst digit from the left

Source: <www.czso.cz>, authors' own calculations
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Th e results of the comparison between the data structure of the national accounts of the Czech Republic 
in 2013 and Benford’s Law are shown in Table 5.

Second digit 

from the left

Absolute 

frequency

nd

Relative 

frequency

pd

Probability

πd
G Zd MAD

0 374 0.137 0.120 0.002422 2.710896 0.017

1 318 0.117 0.114 0.000056 0.385125 0.003

2 307 0.112 0.109 0.000112 0.555222 0.003

3 267 0.098 0.104 0.000365 1.023155 0.006

4 314 0.115 0.100 0.002268 2.590616 0.015

5 236 0.086 0.097 0.001141 1.824810 0.011

6 211 0.077 0.093 0.002644 2.787807 0.016

7 227 0.083 0.090 0.000517 1.211364 0.007

8 235 0.086 0.088 0.000041 0.314340 0.002

9 240 0.088 0.085 0.000102 0.517204 0.003

Total 2 729 0.863 1.000 19.774976 x 0.009

Table 5  Fit to Benford's Law – second digit from the left

Source: <www.czso.cz>, authors' own calculations

Items in Table 5 prove that national accounts data of the Czech Republic in 2013 do not fully comply 
with Benford’s Distribution regarding the second digit from the left . In the goodness-of-fi t test we obtain 
statistics G = 19.77, which is higher than the critical value of 20.95 [9] = 16.9; hence the hypothesis is rejected 
that the empirical and theoretical (Benford’s) distributions are identical. Th e values of the Zd-statistics 
show that the deviations (bold print in Table 5) from the probabilities given by Benford’s Law are present 
for digits 0, 4, and 6; for them, the corresponding values of the Zd-statistics are larger than the critical 
value, which is the quantile of the normed normal distribution (u0.975 = 1.96); hence these deviations are 
deemed statistically signifi cant. Th e MAD characteristic indicates “only” acceptable fi t (cf. Table 3) of 
the data structure of the national accounts of the Czech Republic in 2013 to Benford’s Law.

empirical theoretical
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Figure 2  Fit to Benford's Law – second digit from the left

Source: <www.czso.cz>, authors' own calculations
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Let us recapitulate: the evaluation of the fi t of the national accounts data of the Czech Republic in 2013 
to Benford’s Law with respect to the second digit from the left , the fi t has not been proved and the diff er-
ences are signifi cant for digits 0, 4, and 6. However, their more frequent occurrence does not enable us 
to draw any principal conclusions because this phenomenon is related to a preliminary report. It will be 
interesting to re-evaluate the situation when the fi nal report of 2013 has been published. We can also see 
in Figure 2 that the diff erences for the second digit from the left  are not of a principal nature.

CONCLUSIONS

As already stated above, the role of Benford’s Law is that of a detection and indicator tool. Deviations of 
empirical data, i.e., relative frequencies of occurrence for digits 1, 2, …, 9 as the fi rst (or second) digit 
from the left , from Benford’s Law at the beginning of the verifi cation process are not, as such, manifes-
tations of infringement on (say, accounting) rules. At the beginning of the analysis, such deviations are 
just partial signals that there is certain discrepancy from Benford’s Law. Nothing more, and nothing less. 
Such a signal may be used as recommendation in what direction subsequent analysis should be carried 
out. Namely, it should focus on the items (accounts, subsets, etc.) for which the highest degree of devia-
tion is shown, e.g., within the Z-test, – Formula (6).

Diff erent situations may arise. Either the revealed deviations are explained in a factual and prescribed 
way (if the deviation is not random) or no such explanation is identifi ed. In the latter case, it should be 
seriously investigated why and how the deviation occurred. From experience, a number of instances are 
known in which unexplained deviations led to identifi cation of principal departures from prescribed 
procedures and even forensic proceedings were initiated against the parties concerned.

Th e described approach is open to discussion. Economists, auditors, accountants etc. have varied 
opinions about the detection potential of Benford’s Law. On the one hand there are zealous advocates of 
a notion that a signal triggered by a deviation from Benford’s Law in, say, macroeconomic data (i.e., data 
on the macroeconomic level) or accounting data (i.e., on the corporate level) is a really serious event to 
which proper attention should be given because it will lead to the root from which errors – sometimes 
fully intentional – stem. On the contrary, there are those who feel that the detection role of Benford’s 
Law is a mere formality because the root of the errors will be discovered anyway.

Trust in detection and signalling roles of Benford’s Law thus mainly depends on the level of personal 
experience of those who may use this checking approach. A theoretical dispute aimed at creating a feeling 
that Benford’s Law is useful usually misses this target. Th is observation is based on practical experience 
of the authors of the present paper.
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