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Abstract

A number of processes to which statistical control is applied are subject to various effects that cause random 
changes in the mean value. The removal of these fluctuations is either technologically impossible or economically 
disadvantageous under current conditions. The frequent occurrence of signals in the Shewhart chart due to 
these fluctuations is then undesirable and therefore the conventional control limits need to be extended. Several 
approaches to the design of the control charts with extended limits are presented in the paper and applied 
on the data from a real production process. The methods assume samples of size greater than 1. The performance 
of the charts is examined using the operating characteristic and average run length. The study reveals that 
in many cases, reducing the risk of false alarms is insufficient. 
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INTRODUCTION
Control charts, the main tool of statistical process control (SPC), have been used for more than 80 years. 
The idea behind control charts is to separate the variation due to assignable causes from the random 
variation that is inherent to a process. Apart from the Shewhart chart introduced in 1931, the CUSUM 
chart based on cumulative sums or the EWMA chart using exponentially weighted moving averages 
belong to the best known ones. All these charts are based on the assumption that unless some special 
causes exist in a process, its parameters are constant.    

The extensive study of real production processes in Germany performed by Kaiser et Nowack (2000; 
cf. Michálek, 2001) revealed that only 2% of processes met the assumption of constant parameters. 
Within the Six Sigma approach, the goal is no longer to maintain a constant mean value; it is allowed to 
move around the target as long as the process output conforms to specification. This applies to processes 
in which the variation within a sample taken from the process is very small as compared with the allowable 
variation given by the specification limits. When samples are taken from a process, the differences 
between their averages are greater than would correspond to the within-sample variation on which 
the conventional Shewhart control limits are based, which results in frequent alarms. Bringing such 
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processes to the state when the process mean is constant could be technically or economically impossible 
and, therefore, common changes of the process mean are considered a part of the inherent process variation.

To allow for the process mean’s changes that are still acceptable, the control limits have to be extended. 
Several methods have been introduced in the literature but the information about the properties of the 
resulting charts is missing. The aim of the paper is to examine and discuss the effectiveness of some 
selected control charts. The attention is paid to  X -charts. As with the conventional  X chart, the within-
sample variation is monitored using the R-chart.

1 OVERVIEW OF CONTROL CHARTS WITH EXTENDED LIMITS 
Limiting to cases when samples of size greater than 1 are taken from a process, two main approaches 
can be distinguished. The first approach uses specification limits USL and LSL, the other is based 
on the inherent process variability.

The charts based on the specification limits were introduced and discussed long ago (Rissik, 1943; 
Hill, 1956; Freund, 1957). The centre line of the conventional control chart is replaced by bounds  Uμ  
and Lμ  for the true process mean and the usual 3-sigma limits are drawn outwards from the interval 
( Lμ , Uμ ). The resulting charts are called modified or acceptance control charts and they differ in how 
the interval limits are determined. These charts were presented by many authors without any criticism 
(Duncan, 1986; Montgomery, 2009; Mitra, 2008; Wadsworth et al., 2002). They are also included in 
the standard ISO 7870-3:2012. On the other hand, Bissell (1994) and Wheeler (2004) remark that this 
approach is contrary to the philosophy of continuous improvement because there is no incentive for 
reducing variability. 

The charts based on the inherent process variation appear to be less referred to in the literature. None 
of them is mentioned in the books listed above, with the exception of Bissell (1994), who introduces 
some of the methods from Section 4. Methods of constructing control limits can be divided into two 
groups. 

The first group includes methods in which the standard deviation representing the inherent variation 
is estimated using sample averages. Cryer et Ryan (1990) advocate the use of the overall standard error, 
Wheeler et Chambers (1986), Woodall et Thomas (1995), Laubscher (1996) and Bissell (1994) use moving 
ranges (or their squares) of sample averages. 

The methods in the second group are based on the ANOVA model with random effects and variance 
components, which represent the within-sample and between-sample variability. The variance component 
chart (Laubscher, 1996; Woodall et Thomas, 1995; Wetherill et Brown, 1991) employs 3-sigma limits; the 
standard deviation of sample averages is derived using the ANOVA model. Dietrich et Schulze (2010) 
suggest an approach that is similar to the one using the specification limits, however, the bounds for the 
mean are based on the between-sample variance component.

2 PROCESS CAPABILITY
As mentioned above, the extended control limits are generally used in situations where the within-sample 
variation is considerably smaller than the allowable range USL – LSL. Such processes are called highly 
capable. Process capability reflects the ability of a process where no assignable causes are present to 
function in such a manner that its output, represented by a quality characteristic distribution, lies almost 
completely within specification limits USL and LSL. The concept of process capability was introduced 
in the ‘80s (Sullivan, 1984; Kane, 1986). The most common indices Cp and Cpk are given by the formulas 
(see e.g. Kotz et Johnson, 2002):

                                                                            ,        (1)
6p

USL LSLC
σ
−

=           min( , )pk pU pLC C C=
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where

                                                                       . (2)

It is assumed that the process output is normally distributed with constant  and  over time, where 
 is the measure of the within-sample variability. The assumption of the constant parameters is verified 

by control charts. While the Cp index measures only the process ability to meet the specification limits 
and its construction assumes  as the midpoint of these limits (usually a target), Cpk accounts for the 
real process location. The difference between Cpk and Cp represents the potential improvement to be 
attained by centering the process. The generally accepted minimum value for Cp is 1.33. In the Six Sigma 
methodology, Cp of 2 is considered the aim of a process improvement; even if the mean of such process 
shifts by 1.5  from the midpoint, no serious problems arise since the expected fraction nonconforming 
is as low as 3.4 ppm (Cpk equals 1.5 in this case). Referring to the shift of 1.5   relates to the performance 
of the conventional Shewhart chart – the shifts smaller than 1.5  may be detected quite late by this 
chart. 

It should be noted that the overall performance of a process with an inherent between-sample variation 
is evaluated using the performance indices Pp and Ppk recommended by the Automotive Industry Action 
Group (AIAG, 2005). These indices take into account the total process variation. However, the construction 
of the charts in Section 4.2 is based on the short-time process behaviour and therefore the capability 
index Cpk is considered when the charts are designed.    

3 PERFORMANCE OF CONTROL CHARTS
The  performance of control charts is evaluated using an operating characteristic (OC). The OC curve 
describes the relationship between the probability  of not detecting a shift from the reference value 
 

0μ  to 0 kμ μ σ= +  on the first subsequent sample. Considering the conventional  X-chart (control chart 
for averages) we can write:

                                                                 , (3)

where the magnitude of the shift is expressed in k-multiples of . Usually the normal distribution N( ,  2/n) 
of sample averages with known parameters is assumed. When evaluating the performance of charts 
with extended control limits, the magnitude of a shift will be expressed in k-multiples of total standard 
deviation x and the distribution N( 2,μ σ ) of sample averages will be considered.  

In SPC the average run length (ARL) is widely used. It is the expected value of the number of samples 
taken until the first point exceeds a control limit. If the values of a plotted characteristic can be considered 
independent, run lengths have the geometric distribution G(1– ) and

 
           . (4)

In a certain control chart, ARL depends on the shift magnitude k  (k x). The average run length  
ARL(0) for k = 0 is an important characteristic; it should be as large as possible since frequent 
false alarms may lead to overcontrol, which results in a larger variation of the process output, or 
at least they discourage operators. ARL(0) of the conventional  X -chart is 370.4, which means 
that the false alarm (type I error) can be expected after 370 samples on average. Conversely, ARL 
for a given k > 0 should be as small as possible so that the shift of k  (k x) can be detected 
quickly. 

3pU
USLC μ

σ
−

=           
3pL
LSLC μ
σ
−

=

 
0

1
1

ARL
β

=
−
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4 CONTROL CHARTS BASED ON SPECIFICATION LIMITS
The bounds  Uμ  and  Lμ  for the true process mean are based on the specified proportion of units exceeding 
limits USL and LSL. Formulas for calculation of control limits assume that the distribution from which 
the sample comes is normal with the current value of  and variance 2, i.e. only the within-sample 
variation is taken into account. 

4.1 Modified and acceptance control charts 
The aim of the modified control chart is to determine whether the process mean is within interval 
( Lμ , Uμ ) such that the fraction nonconforming does not exceed the chosen value pA. The bounds for 
the process mean are given by the formulas:

                                                                       ,     (5)

where  denotes the within-sample standard deviation, which is often estimated using the average of sample 
ranges, 2ˆ /R dσ =  . Values of d2 can be found in ISO 7870-2:2013 or any book dealing with Shewhart 
control charts. The control limits are drawn outwards from the interval ( 

Lμ ,  Uμ ) and are positioned at:

                                                                                                                ,  (6)

where α is the type I error risk. 
As Hill (1956, p. 16) points out, the control limits determined by (6) “accept a sample mean nearer to 

the tolerance when there is less information, than when there is more information”, which is an undesirable 
feature. He suggests that the other possibility should be used; the bounds for the mean are:

                                                             , (7)

and for process fraction nonconforming pR to be rejected with probability 1 –  the control limits are:

                                                                                                          . (8)

In this case the control limits lie within the interval ( Lμ , Uμ ) and they are nearer to the specification 
limits for larger sample sizes. The latter chart is sometimes classified as a variant of the acceptance chart 
(Montgomery, 2013; Mitra, 2008). 

The acceptance control chart (Freund, 1957) is based on both risks  and  related to pA and pR and 
therefore the sample size must meet the condition:

                                 ,                                                                (9)

which follows from equating either the upper or the lower control limits in (6) and (8). 

4.2 Choice of parameters 
In the following considerations only a predetermined sample size n is assumed. 

The choice of pA, pR ,  and  or directly percentiles 1 Ap
u − , 1 Rp

u − , 1u α−  and  1u β−  will affect the chart 
performance. The values 1u α−   = 3 and  1u β−  = 1.65 corresponding to the risks of 0.00135 and 0.05 are mostly 
used and will be applied here, too. The choice of 1 Ap

u − , 1 Rp
u −  requires some attention. 

1 AU pUSL uμ σ−= −      1 AL pLSL uμ σ−= +

1
1 ˆ

Ap
uUCL USL u
n
α σ−

−
⎛ ⎞= − −
⎝ ⎠       

1
1 ˆ

Ap
uLCL LSL u
n
α σ−

−
⎛ ⎞= + −
⎝ ⎠

 

1 RU pUSL uμ σ−= −      1 RL pLSL uμ σ−= +  

1
1 Rp

u
UCL USL u

n
β−

−= − −
     

1
1 Rp

u
LCL LSL u

n
β−
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1 1
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α β− −

− −

+
=
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So that the modified limits (6) are wider than the conventional 3-sigma limits, the following inequality 
must apply:

                                 .                                         (10)

The choice of pA can be based on the value of process capability index Cpk. Using relations (1) and (2) 
and the minimum acceptable value 1.33 of Cpk, we get 1 Ap

u −  = 4 and  8USL LSL σ− > . 
Some authors use 1 Ap

u − = 3 or 1 Ap
u − = 4.5 (Jarošová et Noskievičová, 2015, p. 81).

As for 1 Rp
u − , the control limits (8) are wider than the conventional 3-sigma limits if the condition

                                                                                (11)

is met. For 1 Rp
u −  = 2.33 corresponding to the fraction nonconforming of 0.01 (see e.g. Montgomery, 2013, 

p. 442) and n = 5 we get  9USL LSL σ− > , approximately. 
It should be emphasized that the requirement of wider control limits itself does not guarantee 

the expected properties of a control chart, namely a sufficiently high value of ARL(0) and a reasonably 
low value of ARL for a shift that should be detected. ARL depends on the variability of sample averages, 
which is affected both by within-sample and by between-sample variation.

5 CONTROL CHARTS BASED ON THE INHERENT VARIABILITY
The between-sample variation as a part of the inherent variation of a process is taken into account when 
constructing control limits. In most cases 3-sigma limits are used like in the Shewhart chart, i.e.:

                                                           ,                (12)

where  denotes the total average and xσ  the standard deviation of sample averages. Two main approaches 
to estimate xσ  exist: the first approach is based on sample averages, the second approach uses the ANOVA 
model and variance components. 

 
12

Ap
USL LSL u −− >

 
1

4.652
Rp

USL LSL u
n

σ−
⎛ ⎞− > +
⎝ ⎠

3 xσ       3 xσ

Source: Own construction

Table 1  Estimation of x using sample averages

Standard error estimate References

Overall standard error  Cryer et Ryan (1990)

Average moving range
Wheeler et Chambers (1986), 

Woodall et Thomas (1995)

Median moving range Laubscher (1996)

Square root of MSSD Bissell (1994)
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5.1 Charts based on sample averages 
Several methods of estimating xσ  together with references are listed in Table 1, where m is the number of 
samples, j  (j = 1, 2, ..., m) are sample averages and  is the total average. Unbiasing constants c4, d2, and 
d4 can be found for example in Wheeler (2004, p. 416), c4 and d2 are also available in ISO 7870-2:2013. 
Constant c4 depends on the number of samples m (differently from its use in the conventional 
Shewhart charts, where the sample size is cardinal), constants d2 a d4 relate to the use of differences 
between two adjacent observations and therefore correspond to the “sample size” of 2. Consequently, 
d2 = 1.128 and d4 = 0.9539 are always used in these calculations. Woodall et Montgomery (2000) examined 
the bias of various estimates when a shift in the mean is present and concluded that the estimates based 
on moving ranges are preferable. Moreover, the use of the median can reduce or possibly eliminate 
the bias. 

5.2 Charts based on variance components
Variance component chart (Laubscher, 1996; Woodall et Thomas, 1995; Wetherill et Brown, 1991) 
is based on the model:

                             ,                                            (13)

where 0 denotes the grand process mean, aj ~ N(0, 2
Aσ ) is the random effect of sample j, and ijε  ~ N(0, 2) 

represents the within-sample variation. Under the assumption that aj and ijε  are independent, we can write:

                       ,                                      (14)

and

                         .                                              (15)

Control limits are given by (12).
ANOVA is used to estimate variance components 2

Aσ  and 2σ : 

                                                             ,          (16)

where

                                                                                                  ,        (17)

measure the between-sample and within-sample variability, respectively. 
Another approach is recommended by Dietrich et Schulze (2010). It is also based on the random-

effect model (13) but the control limits are constructed differently: the bounds for the process mean 
are distant by ±Δ from the centre line and the common 3-sigma limits are drawn outwards from 
them:

                                                                                   .                       (18)

The authors suggest to choose Δ = 1.5 ˆAσ , where  2ˆAσ  and  2σ̂  are given by (16).
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6 EXAMPLE
The process in which steel frames are moulded has specification limits USL = 35.1 mm and LSL = 34.9 mm. 
Samples of size 5 are taken from the process and the X -chart and R-chart with centre lines determined 
by  = 35.0645 and R = 0.008 are drawn (Figure 1). The estimated within-sample standard deviation 

2ˆ /σ  0.0035 results in 
ˆ
pC = 9.46, indicating a highly capable process. Although more than half of 

the points lie outside the conventional control limits UCLS and LCLS, most of them are not considered to 
signal an assignable cause and therefore the control limits should be extended. All the methods described 
above were used and the resulting limits together with their distance are shown in Table 2. Three columns 
on the right contain the values of standard deviations used in the calculations. The variance components 
from Section 5.2 are displayed in the ANOVA table (Table 3). 

Table 3  ANOVA, Variance component analysis

Source: Own construction

Source: Statgraphics

Source Sum of Squares Df Mean Square F-Ratio P-Value Var. Comp.

Between groups 0.008785 24 0.000366 28.46 0.0000 0.000071

Within groups 0.001286 100 0.000013 0.000013

Total (Corr.) 0.010071 124

Different estimates of  σ̂  obtained by various methods are due to the apparent shift before the 
last two samples (Figure 1). It should be noted that after the retrospective analysis, such points are 
usually omitted and the control limits revised, in which case the differences between the various 
constructions would be much smaller. The narrowest pair of the extended control limits (UCLL and 
LCLL), i.e. the one obtained using the median moving range according to Laubscher (1996), is drawn 
in Figure 1. 

The distance of the modified and acceptance limits is several times larger, thus confirming the criticism 
of Bissell (1994) and Wheeler (2004).  

Table 2  Extended control limits

LCL UCL UCL – LCL x A

Cryer 35.0386 35.0905 0.0519 0.0086 - -

Wheeler 35.0451 35.0840 0.0389 0.0065 - -

Laubscher 35.0485 35.0806 0.0321 0.0053 - -

Bissell 35.0440 35.0850 0.0410 0.0068 - -

Woodall 35.0389 35.0902 0.0513 0.0086 0.0036 0.0084

Dietrich 35.0471 35.0820 0.0348 - 0.0036 0.0084

Modif. 34.9094 35.0906 0.1813 - 0.0035 -

Accept. 34.9108 35.0892 0.1784 - 0.0035 -

ˆ ˆ ˆ
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7 COMPARISON OF SELECTED CHARTS
To compare the performance of control charts, only the case with known parameters A and  is considered. 
The performance of the charts based on different estimates of  2σ  is not examined – it would require 
carrying out some simulations. 

Source: Own construction

Figure 1  X and R control chart
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To calculate the OC curves, the sample size of 5 and the within-sample  = 1 were chosen. Several 
scenarios defined by the different ratio of A /  were applied. Mean’s shifts were expressed as multiples of 

x, where 2 2
x Aσ σ σ= + . In addition, percentiles 1 Ap

u − = 4, 1 Rp
u − = 2.33 and two values of Cp, namely Cp = 

1.67 and Cp = 2.67 were used to determine the modified and acceptance control limits. The control limits 
according to Woodall (Eq. 12) and Dietrich et Schulze (Eq. 18) for the chosen  depend only on the ratio 

A / . Values of ARL for the selected charts are given in Table 4 to 6. Comparing charts, we focus on the 
ARL(0) and ARL(1.5 x), when the process mean shifts by 1.5 x from the reference value. 

Source: Own construction

Source: Own construction

Table 4  ARL for the modified control chart

Table 5  ARL for the acceptance control chart

ARL(kσx)

USL – LSL = 10 σ     (Cp = 1.67) USL – LSL = 16 σ     (Cp = 2.67)

k A = 0.5  A = 1 A = 1.5 A = 2 A = 0.5  A = 1 A = 1.5 A = 2

0 2 075.8 30.7 7.4 3.9 5.6E+14 9.2E+05 1554.4 109.3

0.5 253.5 14.2 5.1 3.1 2.0E+12 8.6E+04 432.6 48.9

1 29.3 5.0 2.7 2.0 6.6E+09 5.9E+03 84.1 15.4

1.5 6.2 2.4 1.7 1.4 4.3E+07 6.1E+02 21.7 6.0

2 2.3 1.5 1.3 1.2 5.5E+05 9.2E+01 7.5 3.0

ARL(kσx)

USL – LSL = 10 σ     (Cp = 1.67) USL – LSL = 16 σ     (Cp = 2.67)

k A = 0.5  A = 1 A = 1.5 A = 2 A = 0.5  A = 1 A = 1.5 A = 2

0 256.0 13.0 4.6 2.9 5.3E+12 1.5E+05 619.5 62.4

0.5 49.6 7.2 3.5 2.4 2.9E+10 1.8E+04 197.1 30.5

1 9.0 3.1 2.1 1.7 1.6E+08 1.5E+03 44.1 10.6

1.5 2.9 1.8 1.4 1.3 1.7E+06 2.0E+02 13.0 4.5

2 1.5 1.3 1.2 1.1 3.5E+04 3.7E+01 5.1 2.4

The performance of both control charts based on specification limits is similar. For the process with 
Cp = 1.67, ARL(0) is acceptably high only for A < . Values of A comparable with  or higher result 
in frequent false alarms. On the other hand, ARL(1.5 x ) for the process with Cp = 2.67 and A < 2  
is unacceptably high, which means that such shifts may be detected quite late. 

Due to the use of 3-sigma limits, the varcomp chart by Woodall keeps ARL(0) at the same level 
regardless of A, but ARL increases with A (Table 6). Differently from the Shewhart chart, ARL(1.5 x ) 
is much longer for A equal to or greater than . The chart by Dietrich et Schulze reveals relatively fast 
shifts of 1.5 x and greater regardless of A, but for A equal to or greater than , ARL(0) is too small and 
hence the risk of false alarm is high.
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Source: Own construction

Table 6  ARL of the control charts based on variance components

ARL(kσx)

Woodall Dietrich, Schulze

k
A = 0.5  A = 1 A = 1.5 A = 2 A = 0.5  A = 1 A = 1.5 A = 2

0 370.4 370.4 370.4 370.4 549.3 105.4 46.0 29.3

0.5 65.8 106.3 127.4 137.9 89.3 38.1 22.3 16.2

1 11.0 22.9 31.0 35.5 13.6 10.4 7.9 6.5

1.5 3.2 7.0 9.8 11.6 3.7 3.9 3.5 3.2

2 1.6 3.0 4.1 4.8 1.7 2.0 2.0 1.9

CONCLUSION
It appears that the modified and acceptance control charts generally do not perform well when the process 
mean fluctuates randomly. This is likely why Wheeler claims that modified limits “can never work as 
well as the data-based three-sigma limits” (Wheeler, 2004, p. 21) or “It will only encourage alternating 
periods of benign neglect and intense panic.” (Wheeler, 2004, p. 346). Although the performance of these 
charts is influenced by the extent of the between-sample variation, this is not taken into account when 
the bounds for the mean are chosen. 

The approach by Dietrich et Schulze (2010) is similar to the modified chart, but the bounds for the 
mean are derived from the between-sample variation. However, the recommended choice of 1.5 A from 
the centre line results in small values of ARL(0) for larger A. 

The varcomp chart (and similarly it can be said about the other charts based on sample averages) 
detects a mean’s shift slower than the previous chart for A equal to or greater than , but regardless 
of A, it retains the desired value of ARL(0).

The properties of the control charts were examined under the assumption of the normal distribution 
of sample averages with known parameters. As with the conventional Shewhart chart, the values of ARL 
will be influenced by departures from normality and by the fact that the parameters are usually estimated. 
The frequently chosen sample size of 5 was considered here. With exception of ARL(0) with the varcomp 
chart, both ARL(0) and ARL depend on the sample size. For most control charts, the increasing sample 
size leads, as with the Shewhart chart, to the narrower control limits and hence to lower values of ARL. 
The opposite is true with the acceptance chart; the control limits become wider and the values of ARL 
are higher when the sample size increases. 

Based on the study, the charts using the specification limits and the chart according to Dietrich 
and Schulze (2010) are not advisable for use primarily because of the possibility of frequent false signals. 
The use of the two former charts could be taken into account in the statistical control of processes with 
a trend (Bissell, 1994; Jarošová and Noskievičová, 2015).
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