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Abstract

Moments and cumulants are commonly used to characterize the probability distribution or observed data set. 
Th e use of the moment method of parameter estimation is also common in the construction of an appropriate 
parametric distribution for a certain data set. Th e moment method does not always produce satisfactory re-
sults. It is diffi  cult to determine exactly what information concerning the shape of the distribution is expressed 
by its moments of the third and higher order. In the case of small samples in particular, numerical values of 
sample moments can be very diff erent from the corresponding values of theoretical moments of the relevant 
probability distribution from which the random sample comes. Parameter estimations of the probability dis-
tribution made by the moment method are oft en considerably less accurate than those obtained using other 
methods, particularly in the case of small samples. Th e present paper deals with an alternative approach to 
the construction of an appropriate parametric distribution for the considered data set using order statistics.
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INTRODUCTION

L-moments form the basis for a general theory which includes the summarization and description of 
theoretical probability distributions and obtained sample data sets, parameter estimation of theoretical 
probability distributions and hypothesis testing of parameter values for theoretical probability distribu-
tions. Th e theory of L-moments includes the established methods such as the use of order statistics and 
the Gini mean diff erence. It leads to some promising innovations in the area of measuring skewness 
and kurtosis of the distribution and provides relatively new methods of parameter estimation for an in-
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dividual distribution. L-moments can be defi ned for any random variable whose expected value exists. 
Th e main advantage of L-moments over conventional moments is that they can be estimated by linear 
functions of sample values and are more resistant to the infl uence of sample variability. L-moments are 
more robust than conventional moments to the existence of outliers in the data, facilitating better con-
clusions made on the basis of small samples of the basic probability distribution. L-moments sometimes 
bring even more effi  cient parameter estimations of the parametric distribution than those estimated by 
the maximum likelihood method for small samples in particular, see Hosking (1990).

L-moments have certain theoretical advantages over conventional moments consisting in the ability 
to characterize a wider range of the distribution (i.e. range of values that the random variable can take 
including the extreme values). Th ey are also more resistant and less prone to estimation bias, approxi-
mation by the asymptotic normal distribution being more accurate in fi nite samples, see Serfl ing (1980).

Let X be a random variable being distributed with the distribution function F(x) and quantile func-
tion x(F) and let X1, X2, …, Xn be a random sample of the sample size n from this distribution. Th en 

X...XX nnnn ::2:1   are order statistics of the random sample of the sample size n which comes from 
the distribution of the random variable X.

L-moments are analogous to conventional moments. Th ey can be estimated on the basis of linear 
combinations of sample order statistics, i.e. L-statistics. L-moments are an alternative system describing 
the shape of the probability distribution.

1 METHODS AND METHODOLOGY

1.1 L-Moments of Probability Distributions

Th e issue of L-moments is discussed, for example, in Adamowski (2000) or Ulrych et al. (2000). Let X be 
a continuous random variable being distributed with the distribution function F(x) and quantile func-
tion x(F). Let X...XX nnnn ::2:1   be order statistics of a random sample of the sample size n which 
comes from the distribution of the random variable X. L-moment of the r-th order of the random vari-
able X is defi ned as:

(1)

An expected value of the r-th order statistic of the random sample of the sample size n has the form:

                                                                           .                   (2)

If we substitute equation (2) into equation (1), aft er adjustments we obtain:

                                                                                  ..., (3)

where:

                                                                                                             , (4)

Pr
*[F(x)] being the r-th shift ed Legendre polynomial. Having substituted expression (2) into expression 

(1), we also obtained:
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                                                                                                                                                         ... .  (5)

Th e letter “L” in “L-moments” indicates that the r-th L-moment λr is a linear function of the expected 
value of a certain linear combination of order statistics. Th e estimate of the r-th L-moment λr, based on 
the sample, is thus the linear combination of order data values, i.e. L-statistics. Th e fi rst four L-moments 
of the probability distribution are now defi ned as:

                                                  ,   (6)     

                                                                                       ,   (7) 

                                                                                                                            ,  (8)
                                                                                                                            

                                                                                                                                                                     .   (9)

Th e probability distribution can be specifi ed by its L-moments even if some of its conventional mo-
ments do not exist, the opposite, however, is not true. It can be proved that the fi rst L-moment λ1 is a 
location characteristic, the second L-moment λ2 being a variability characteristic. It is oft en desirable to 
standardize higher L-moments λr, r ≥ 3, so that they can be independent of specifi c units of the random 
variable X. Th e ratio of L-moments of the r-th order of the random variable X is defi ned as:

(10)

We can also defi ne the function of L-moments which is analogous to the classical coeffi  cient of vari-
ation, i.e. the so called L-coeffi  cient of variation:

(11)

Th e ratio of L-moments τ3 is a skewness characteristic, the ratio of L-moments τ4 being a kurtosis char-
acteristic of the corresponding probability distribution. Main properties of the probability distribution are 
very well summarized by the following four characteristics: L-location λ1, L-variability λ2, L-skewness τ3 

and L-kurtosis τ4. L-moments λ1 and λ2, the L-coeffi  cient of variation τ and ratios of L-moments τ3 and 
τ4 are the most useful characteristics for the summarization of the probability distribution. Th eir main 
properties are existence (if the expected value of the distribution is fi nite, then all its L-moments exist) 
and uniqueness (if the expected value of the distribution is fi nite, then L-moments defi ne the only dis-
tribution, i.e. no two distinct distributions have the same L-moments).

Using equations (6)−(9) and (10), we obtain both the expressions for L-moments and L-moments 
ratios for lognormal and generalized Pareto probability distributions, see Table 1.
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1.2 Sample L-Moments

L-moments are usually estimated by a random sample obtained from an unknown distribution. Since 
the r-th L-moment λr is the function of the expected values of order statistics of a random sample of the sam-
ple size r, it is natural to estimate it using the so-called U-statistic, i.e. the corresponding function of sample 
order statistics (averaged over all subsets of the sample size r, which may be formed from the obtained random 
sample of the sample size n).

Let x1, x2, …, xn be the sample and x...xx nnnn ::2:1   the ordered sample. Th en the r-th sample 
L-moment can be written as:

(12)

Hence the fi rst four sample L-moments have the form:
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Table 1  Formulas for distribution or quantile functions, L-moments and their ratios for lognormal and generalized
                Pareto probability distributions

Source: Hosking (1990); own research

Distribution function F(x)

or quantile function x(F)
Distribution

Logo normal

Generalized Pareto

L-moments and ratios of L-moments

⎭

⎬

⎫

⎩

⎨

⎧

σ

μ−ξ−
Φ=

])([ln

)(

Fx

xF  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ σ
+μ+ξ=λ

2

exp

2

1
 

⎟

⎠

⎞
⎜

⎝

⎛ σ
⋅

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ σ
+μ=λ

2

erf

2

exp

2

2
 

⎟

⎠

⎞

⎜

⎝

⎛ σ

−⋅
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⋅π=τ

∫

σ

−

2

erf

d)(exp

3

erf

6

2

0

2

2

1

3

x
x

x

 

k

xF

Fx

k

)]([11

)(

−−

⋅α+ξ=

k+

α

+ξ=λ

1

1

 

)(2)(1

2

kk +⋅+

α

=λ

 

k

k

+

−

=τ

3

1

3

 

)4()3(

)2()1(

4

kk

kk

+⋅+

−⋅−

=τ



2014

81

94 (2)STATISTIKA

   (15)

 

  

(16)

U-statistics are widely used especially in nonparametric statistics. Th eir positive properties are the 
absence of bias, asymptotic normality and a slight resistance due to the infl uence of outliers, see Hosk-
ing (1990).

When calculating the r-th sample L-moment, it is not necessary to repeat the process over all sub-sets 
of the sample size r, since this statistic can be expressed directly as a linear combination of order statistics 
of a random sample of the sample size n.

If we assume an estimate of E(Xr:r) obtained with the use of U-statistics, it can be written as r · br − 1, where:

(17)

namely:
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Th us the fi rst sample L-moments can be written as:

l1 = b0 , (22)
 
l2 = 2b1 – b0,   (23)
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We can therefore write generally:

(26)

where:

(27)

Sample L-moments are used in a similar way as sample conventional L-moments, summarizing the ba-
sic properties of the sample distribution, which are the location (level), variability, skewness and kurtosis. 
Th us, sample L-moments allow an estimation the corresponding properties of the probability distribution 
from which the sample originates and can be used in estimating the parameters of the relevant probabil-
ity distribution. We oft en prefer L-moments to conventional moments within such applications, since 
sample L-moments – as the linear functions of sample values – are less sensitive to sample variability or 
measurement errors in extreme observations than conventional moments. L-moments therefore lead to 
more accurate and robust estimates of characteristics or parameters of the basic probability distribution.

Sample L-moments have been used previously in statistics, but not as part of a unifi ed theory. Th e 
fi rst sample L-moment l1 is a sample L-location (sample average), the second sample L-moment l2 being 
a sample L-variability. Th e natural estimation of L-moments (10) ratio is the sample ratio of L-moments:

(28)

Hence t3 is a sample L-skewness and t4 is a sample L-kurtosis. Sample ratios of L-moments t3 and t4 
may be used as the characteristics of skewness and kurtosis of a sample data set.
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Table 2  Formulas for parameter estimations made by the method of L-moments of lognormal and generalized
                 Pareto probability distributions 

Source: Hosking (1990); own research
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Th e Gini mean diff erence relates both to sample L-moments, having the form of:

(29)

and the Gini coeffi  cient which depends only on a single parameter σ in the case of the two-parametric 
lognormal distribution, depending, however, on the values of all three parameters in the case of the 
three-parametric lognormal distribution. Table 2 presents the expressions for parameter estimations of 
lognormal and generalized Pareto probability distributions obtained using the method of L-moments. 
For more details see, for example, Bílková (2010), Bílková (2011), Bílková (2012), Bílková, Malá (2012), 
Hosking (1990) or Kyselý, Picek (2007).

1.3  TL-Moments of Probability Distributions

An alternative robust version of L-moments is introduced in this subchapter. Th e modifi cation is called 
“trimmed L-moments” and it is termed TL-moments. Th e expected values of order statistics of a random 
sample in the defi nition of L-moments of probability distributions are replaced with those of a larger 
random sample, its size growing correspondingly to the extent of the modifi cation, as shown below.

Certain advantages of TL-moments outweigh those of conventional L-moments and central moments. 
TL-moment of the probability distribution may exist despite the non-existence of the corresponding 
L-moment or central moment of this probability distribution, as it is the case of the Cauchy distribu-
tion. Sample TL-moments are more resistant to outliers in the data. Th e method of TL-moments is not 
intended to replace the existing robust methods but rather supplement them, particularly in situations 
when we have outliers in the data.

In this alternative robust modifi cation of L-moments, the expected value E(Xr-j:r) is replaced with the 
expected value E(Xr + t1 − j : r + t1 + t2). Th us, for each r, we increase the sample size of a random sample 
from the original r to r + t1 + t2, working only with the expected values of these r modifi ed order statistics 
Xt1 + 1:r + t1 + t2, Xt1 + 2:r + t1 + t2, …, Xt1 + r:r + t1 + t2 by trimming the smallest t1 and largest t2 from the 
conceptual random sample. Th is modifi cation is called the r-th trimmed L-moment (TL-moment) and 
marked as .), 21( tt

r  Th us, TL-moment of the r-th order of the random variable X is defi ned as:
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It is evident from the expressions (30) and (1) that TL-moments are reduced to L-moments, where 
t1 = t2 = 0. Although we can also consider applications where the adjustment values are not equal, i.e. 
t1 ≠ t2, we will focus here only on the symmetric case t1 = t2 = t. Th en the expression (30) can be rewritten:
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For t = 1, the fi rst four TL-moments have the form:
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Th e measurements of location, variability, skewness and kurtosis of the probability distribution 
analogous to conventional L-moments (6)−(9) are based on  )))) 1(

4
1(

3
1(

2
1(

1 a,, .
Th e expected value E(Xr:n) can be written using the formula (2). With the use of the equation (2), we 

can express the right side of the equation (31) again as:
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It is necessary to point out that  rr
)0(  represents a normal r-th L-moment with no respective 

adjustments.
Expressions (32)−(35) for the fi rst four TL-moments (t = 1) may be written in an alternative way as:

λ1
(1) = 6 . 

1

∫
0  

 x(F) . [F(x)] . [1 – F(x)] dF(x),   (37)

 
λ2

(1) = 6 . 
1

∫
0  

 x(F) . [F(x)] . [1 – F(x)] . [2F(x) – 1] d F(x), (38)

 
λ3

(1) = 20
3   . 

1

∫
0  

 x(F) . [F(x)] . [1 – F(x)] . {5[F(x)]2 – 5F(x) + 1} d F(x), (39)

 
λ4

(1) = 15
2   . 

1

∫
0  

 x(F) . [F(x)] . [1 – F(x)] . {14[F(x)]3 – 21[F(x)]2 + 9[F(x)] –1} d F(x). (40)

Th e distribution can be determined by its TL-moments, even though some of its L-moments or 
conventional moments do not exist. For example, λ1

(1) (the expected value of the median of a conceptual 
random sample of sample size three) exists for the Cauchy distribution, despite the non-existence of the 
fi rst L-moment λ1.

TL-skewness τ3
(t) and TL-kurtosis τ4

(t) can be defi ned analogously as L-skewness τ3 and L-kurtosis τ4

τ3
(t) = λ3

(t)  
,

             λ2
(t) (41)

τ4
(t) = λ4

(t)  
,

             λ2
(t) (42)
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1.4 Sample TL-Moments

Let x1, x2, …, xn be a sample and x1 : n ≤ x2 : n ≤ ... ≤ xn : n an order sample. Th e expression:
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is considered to be an unbiased estimate of the expected value of the (j + 1)-th order statistic Xj + 1:j + l + 1 
in the conceptual random sample of sample size (j + l + 1). Now we will assume that in the defi nition of 
TL-moment λr

(t) in (31), the expression E(Xr + t − j:r + 2t ) is replaced by its unbiased estimate:

(44)

which is obtained by assigning j → r + t − j − 1 a l → t + j in (43). Now we get the r-th sample TL-moment:

(45)

i.e.:
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which is an unbiased estimate of the r-th TL-moment λr
(t). Let us note that for each j = 0, 1, …, r – 1, the 

values xi:n in (46) are not equal to zero only for r + t − j ≤ i ≤ n − t – j, taking combination numbers into 
account. A simple adjustment of equation (46) provides an alternative linear form:

 (47)

For r = 1, for example, we obtain for the fi rst sample TL-moment:

(48)

where the weights are given by:

 (49)
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nXÊ nitrjtr

n

i


































 


 

,2,...,2,1,)(
1

)1(1 1

0

(
2:

) tnrXÊ
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Th e above results can be used for the estimation of TL-skewness τ4
(t)  and TL-kurtosis τ4

(t)  by simple ratios:

  (50)
 

  (51)

We can choose t = nα, representing the size of the adjustment from each end of the sample, where 
α is a certain ratio, where 0 ≤ α < 0,5.

Table 3 contains the expressions for TL-moments and their ratios as well as those for parameter 
estimations of logistic and Cauchy probability distributions obtained employing the method of 
TL-moments (t = 1); for more, see, e.g. Elamir, Seheult (2003).

.)

)
)

(
2

(
4(

4
l
lt t

t
t 

,)

)
)

(
2

(
3(

3
l
lt t

t
t 

Distribution TL-moments and ratios of TL-moments Parameter estimation

Logistic 

μ=λ
(1)

1
 

σ=λ ,5000
(1)

2
 

0
(1)

3
=τ  

,0830
(1)

4
=

τ
 

 

lˆ =μ

(1)

1
 

lˆ 2

(1)

2
=σ  

Cauchy 

μ=λ
(1)

1
 

σ=λ ,6980
(1)

2
 

0
(1)

3
=τ  

,3430
(1)

4
=

τ
 

 

lˆ =μ

(1)

1
 

0,698

(1)

2
l

ˆ =σ  

Table 3  Formulas for TL-moments and their ratios and parameter estimations made by the method of TL-moments
                of logistic and Cauchy probability distributions (t = 1) 

Source: Elamir, Seheult (2003); own research

Parameter estimationDistribution

Logistic

Cauchy

TL-moments and ratios of TL-moments

1.5 Maximum Likelihood Method

Let a random sample of sample size n come from the three-parametric lognormal distribution with 
a probability density function:

f(x; μ, σ2, θ) 

  

(52)

   
where –∞ < μ < ∞, σ2 > 0, –∞ < θ < ∞ are parameters. Th e three-parametric lognormal distribution is 
described in detail, for example, in Bílková (2010), Bílková (2011) and Bílková (2012).

,
2 2

])([ln 2
exp

2)(
1





























x
x

,> x

,0

μ=λ
(1)

1
 

σ=λ ,5000
(1)

2
 

0
(1)

3
=τ  

,0830
(1)

4
=

τ
 

lˆ =μ

(1)

1
 

lˆ 2

(1)

2
=σ  

μ=λ
(1)

1
 

σ=λ ,6980
(1)

2
 

0
(1)

3
=τ  

,3430
(1)

4
=

τ
 

lˆ =μ

(1)

1
 

0,698

(1)

2
l

ˆ =σ  



2014

87

94 (2)STATISTIKA

Th e likelihood function then has the form:

  

  

(53)

We determine the natural logarithm of the likelihood function:

  
(54)

We make the fi rst partial derivatives of the likelihood function logarithm according to μ and σ2 equal 
to zero, obtaining a system of likelihood equations:

  

(55)

 

  
(56)

Aft er adjustment we obtain maximum likelihood estimations of parameters μ and σ2 for the parameter θ:

  
(57)

 

  
(58)

If the value of the parameter θ is known, we get maximum likelihood estimates of the remaining two 
parameters of the three-parametric lognormal distribution using equations (57) and (58). However, if 
the value of the parameter θ is unknown, the problem is more complicated. It has been proved that if 
the parameter θ gets closer to min{X1, X2, …, Xn}, then the likelihood function approaches infi nity. Th e 
maximum likelihood method is also oft en combined with the Cohen method, where the smallest sample 
value is made equal to 100  (n + 1) 1% quantile:

  
(59)

Equation (59) is then combined with the system of equations (57) and (58).
For the solution of maximum likelihood equations (57) and (58), it is also possible to use ̂  satisfy-

ing the equation:
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(60)

where:

  (61)

where )(and)(  ˆˆˆˆ  comply with equations (57) and (58), the parameter θ being replaced by .̂ We may 
also obtain the bounds of variances:

 

 (62)
 

 
 (63)
 

 
 (64)

2 RESULTS

L-moments method used to be employed in hydrology, climatology and meteorology in the research 
of extreme precipitation, see, e.g. Kyselý, Picek (2007), having mostly used smaller data sets. Th is study 
presents applications of L-moments and TL-moments to large sets of economic data, Table 4 showing 
the sample sizes of obtained household sample sets. Researched sampled sets of households constitute a 
reprezentative sample of the study population. Th e research variable is the net annual household income 
per capita (in CZK) in the Czech Republic (nominal income). Th e data collected by the Czech Statistical 
Offi  ce come from the Microcensus survey spanning the years 1992, 1996 and 2002. In total, 72 income 
distributions were analyzed – for all households in the Czech Republic as well as with the use of particu-
lar criteria: gender, region (Bohemia and Moravia), social group, municipality size, age and the highest 
educational attainment. Th e households are divided into subsets according to their heads – mostly men. 
Th e head of household is always a man in two-parent families (a husband-and-wife or cohabitee type), 
regardless of the economic activity. In lone-parent families (a one-parent-with-children type) and 
non-family households whose members are related neither by marriage (partnership) nor parent-child 
relationship, a crucial criterion for determining the head of household is the economic activity, anoth-
er aspect being the amount of money income of individual household members. Th e former criterion 
also applies in the case of more complex household types, for instance, in joint households of more 
two-parent families.

Th ree-parametric lognormal distribution is here used as a basic theoretical probability distribution. 
Experience shows that the use of three-parametric lognormal curve as a model of income distribution 
is suffi  cient for global income models on a national scale and for income models arised using very gross 
classifi cation with large sample sizes, see Hátle et al. (1975).
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Parameters of three-parametric lognormal curves were estimated simultaneously, three methods of 
parametric estimation having been employed – namely those of TL-moments, L-moments and maxi-
mum likelihood, their accuracy being compared to each other with the use of a common test criterion:

 
 (65)

where ni are the observed frequencies in particular income intervals, i are theoretical probabilities of a 
statistical unit belonging to the i-th interval, n is the total sample size of a corresponding statistical set, n  i 
are theoretical frequencies in particular income intervals, i = 1, 2, ..., k, and k is the number of intervals.

However, the appropriateness of a model curve for the income distribution is not a common 
mathematical and statistical issue encompassing tests of the null hypothesis.

     H0: Th e samplecomes from the assumed theoretical distribution

against the alternative hypothesis

     H1: non H0,

since large sample sizes occur frequently in goodness of fi t tests in the case of the income distribution, 
and hence the tests would mostly lead to the rejection of the null hypothesis. Th is results not only from 
a high power of the test at a chosen signifi cance level, enabling it to indicate the slightest divergences 
between the actual income distribution and the model, but also from the test construction itself.

Not focusing, in fact, on small divergences, we are satisfi ed with a rough agreement of the model with 
the reality, the model (curve) being simply “borrowed”. In this respect, only tentative conclusions can be 
drawn from the use of the test criterion 2. We have to assess the suitability of the model subjectively to 
some extent, relying on experience and logical analysis.

Th e value of α = 0.25 from the middle of the interval 0 ≤ α < 0,5 was used in this research. With only 
minor exceptions, the TL-moments method produced the most accurate results. L-moments was the 
second most eff ective method in more than half of the cases, the diff erences between this method and 
that of maximum likelihood not being signifi cant enough as far as the number of cases, when the former 
gave better results than the latter. Table 5 represents distinctive outcomes for all 72 income distributions, 
showing the results for the total household sets in the Czech Republic. Apart from the estimated param-
eter values of the three-parametric lognormal distribution, which were obtained having simultaneously 
employed TL-moments, L-moments and maximum likelihood methods, Table 5 contains the values of 
the test criterion (65), indicating that the L-moments method produced – in two out of three cases – 
more accurate results than the maximum likelihood method, the most accurate outcomes in all three 
cases being produced by the TL-moments method.

For the year 1992, an estimate of the value of the parameter θ (the beginning of the distribution, 
theoretical minimum) made by the maximum likelihood method is negative. Th is, however, may not 
interfere with good agreement between the model and the real distribution since the curve has initially 
a close contact with the horizontal axis.
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Table 4  Sample sizes of income distributions 

1992 1996 2002

Sample size 16 233 28 148 7 973

Source: Own research
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Figure 1   Histograms of employees by net annual household income per capita with parameters of three-parametric
               lognormal curves estimated by the method of TL-moments method of L-moments and maximum likeli-
                  hood method in 1992

a. Method of TL-moments

b. Method of L-moments
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c. Maximum likelihood method

Source: Own research
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Figure 2 Histograms of employees by net annual household income per capita with parameters of three-
                       parametric lognormal curves estimated by the method of TL-moments method of L-moments and maxi-
                    mum likelihood method in 2002

a. Method of TL-moments

b. Method of L-moments
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c. Maximum likelihood method

Source: Own research
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CONCLUSION

A relatively new class of moment characteristics of probability distributions has been introduced in the 
present paper. Th ey are the characteristics of the location (level), variability, skewness and kurtosis of 
probability distributions constructed with the use of L-moments and TL-moments that represent a ro-
bust extension of L-moments. Th e very L-moments were implemented as a more robust alternative to 

Figures 1−2 allow us to compare the methods in terms of histogram of employees by net annual 
household income per capita with parameters of three-parametric lognormal curves estimated using 
various methods of parameter estimation in the given years (1992 and 2002) for the whole set of all 
households in the Czech Republic. It is clear from these fi gures that the methods of TL-moments and 
L-moments produce very similar results, while the histogram with the parameters estimated by the 
maximum likelihood method diff ers greatly from the histograms constructed using TL-moments and 
L-moments methods respectively.

A comparison of the accuracy of the three methods of point parameter estimation is also provided 
by Table 6. It shows the development of the sample median and theoretical medians of the lognormal 
distribution with the parameters estimated using the methods of TL-moments, L-moments and maxi-
mum likelihood for the whole set of households in the Czech Republic over the research period. Th is 
table also shows the diff erences between the theoretical and corresponding sample medians. It is also 
obvious from this table that the diff erence between the theoretical and sample medians is the smallest 
for the method of TL-moments, the method of L-moments follows and the maximum likelihood method 
is the least accurate.

Year
Method of TL-moments Method of L-moments Maximum likelihood method

μ σ2 θ μ σ2 θ μ σ2 θ

1992

1996

2002

9.722

10.334

10.818

0.521

0.573

0.675

14 881

25 981

40 183

9.696

10.343

10.819

0.700

0.545

0.773

14 491

25 362

37 685

10.384

10.995

11.438

0.390

0.424

0.459

–325

52 231

73 545

Year Criterion χ2 Criterion χ2 Criterion χ2

1992 739.512 811.007 1 227.325

1996 1 503.878 1 742.631 2 197.251

2002 998.325 1 535.557 1 060.891

Table 5  Parameter estimations of three-parametric lognormal curves obtained using three various methods 
                  of point parameter estimation and the value of χ2 criterion

Source: Own research

Year

Median Diff erence

Method of 
TL-moments

Method of 
L-moments

Maximum 
likelihood 
method

Sample 
median

Method of 
TL-moments

Method of 
L-moments

Maximum 
likelihood 
method

1992 30 743 31 562 32 013 31 000 –257 562 1 013

1996 56 742 56 401 59 628 57 700 –958 –1 299 1 928

2002 90 094 87 646 92 855 89 204 890 –1 558 3 651

Table 6  Theoretical medians obtained using the various method of parametric estimation, sample medians 
                  and the diff erence between the theoretical and sample median

Source: Own research
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classical moments of probability distributions. L-moments and their estimates, however, are lacking in 
some robust features that are associated with TL-moments.

Sample TL-moments are the linear combinations of sample order statistics assigning zero weight 
to a predetermined number of sample outliers. Th ey are unbiased estimates of the corresponding TL-
moments of probability distributions. Some theoretical and practical aspects of TL-moments are still 
the subject of both current and future research. Th e effi  ciency of TL-statistics depends on the choice of 
α, for example,  l 1

(0), l 1
(1), l 1

(2) have the smallest variance (the highest effi  ciency) among other estimates for 
random samples from the normal, logistic and double exponential distribution.

Th e above methods as well as other approaches, e.g. Marek (2011) or Marek, Vrabec (2013), can be 
also adapted for modelling the wage distribution and other economic data analysis.
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