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Abstract

Time series with long seasonal periods are very common. Several methods have been proposed for modeling 
of long seasonal cycles, the most commonly used ones being those based on basis expansion. In this paper, we 
present and discuss these methods. We also use them to model seasonality in realized volatility of several major 
stock market indices and find evidence for the existence of yearly as well as weekly seasonality. The presented 
approaches can potentially be used for modeling of any seasonal time series with a long seasonal period.
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INTRODUCTION
While seasonality of returns has been studied thoroughly, seasonality in volatility of stock markets 
has received much less attention in the literature. Back et al. (2013) showed that including a seasonal 
component in volatility into an option pricing model greatly improves the model performance. This was 
further studied by Arismendi et al. (2016) who proposed a seasonally varying long-run mean variance 
process. Day-of-the-week effect in volatility of stock markets during the period from 1988 through 2002 
was studied in Kiymaz and Berument (2003) who found that the highest volatility occurs on Mondays 
for Germany and Japan, on Fridays for Canada and the United States, and on Thursdays for the United 
Kingdom. Furthermore, Giovanis (2009) studied the calendar effects (turn-of-the-month, day-of-
the-week, month-of-the-year and semi-month effect) in the volatility of 55 stock market indices and 
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concluded that there is a day-of-the-week and month-of-the-year effect in volatility. Another seasonal 
anomaly in volatility was reported by Seyyed et al. (2005) who studied data from Saudi Arabian stock 
market during Ramadan and found a significant and predictable decrease of volatility during this 
period. 

In our paper, we model the yearly seasonal cycle in daily time series of realized volatility of 19 stock 
market indices in the period from 2000 till 2017. Such a seasonal cycle is an example of seasonality with 
a long seasonal period, namely 365 days. We investigate various approaches to modeling of such a seasonal 
cycle that are based on basis expansion. We demonstrate that the choice of the basis functions is a crucial 
step in the modeling process. The results we obtain may play an important role in volatility modeling. 
Moreover, the approaches we present are more general since they can potentially be used for modeling 
of any time series with a long seasonal period.

The paper is organized as follows. Section 1 introduces the approaches to seasonality modeling based 
on basis expansion methods. Section 2 performs the analysis of the 19 realized volatility time series. Last 
section concludes.

1 BASIS EXPANSION METHODS FOR MODELING SEASONALITY
In the following text a daily time series of realized volatility of length N will be denoted as {Xt : t = 1, ... N}, 
where time t corresponds to trading days. We will assume the following model for {Xt}:

                                                                                                                                                     (1)

where {S1,m(t)} is a yearly deterministic seasonal component including an intercept and {S2,n(t)} a weekly 
deterministic seasonal component. m(t), being a function of t, is the calendar day of the year and can take 
any value from 1 to L = 365. Leap days have been removed from the analysis for simplicity. Analogously, 
n(t) is the day of the week, where 1 = Monday, 2 = Tuesday, 3 = Wednesday, 4 = Thursday and 5 = Friday. 
{Et : t = 1, ... N} is a stationary ARMA(p, q) term given as:

                                                                                                                    (2)

where i i pφ = …  and i i qθ = …  are parameters and t t N= …ε  is Gaussian white noise. 
In the paragraphs below, we introduce several approaches to modeling {S1,m(t)} based on basis expansion. 

By basis expansion we mean rewriting {S1,m(t)} as a linear combination of “basis functions”.

1.1 Dummy variables
The most common approach to modeling yearly seasonal cycle in daily time series is rewriting S1,m(t) 
as a sum of an intercept term and 11 dummy variables. Specifically, we can write:5

                                           (3)

where c is an intercept and αk, for k = 2, ...12, are parameters and ψk, for k = 2, ..., 12, is a dummy 
variable which is equal to 1 if calendar day m is part of month k, and to 0 if day m is not part of 
month k.6

( ) ( )1, 2,        1, ,  , t tm t n tX S S E t N= + + = …

1 1 1 1 ,       1, ,   ,t t p t p t q t q tE E E t Nφ φ θ ε θ ε− − − −= +…+ + +…+ + = …ε

5 For simplicity, we write S1,m instead of S1,m(t).
6 k = 2 is February, k = 3 is March, … , k = 12 is December.
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1.2 Fourier basis
Now, we introduce the approach of representing {S1,m(t)} by means of Fourier basis functions, which 
amounts to rewriting {S1,m(t)} as a sum of sines and cosines of different frequencies and amplitudes. More 
specifically, we can write:7

                                                                                                                             (4)

where c is an intercept and αk and βk, for k = 1, ..., K, are parameters. K can potentially take any value 
from 1 to 182, assuming that L = 365. The number of parameters used in the expansion (including 
the intercept) is 1 + 2K.

The choice of K has a direct impact on the smoothness of the seasonal cycle. A large value of K results 
in low as well as high-frequency features being present in the seasonal cycle. On the other hand, a small 
value of K results only in low-frequency features being present in the cycle. 

1.3 Periodic linear spline 
A potential disadvantage of using the decomposition of {S1,m(t)} into sines and cosines (see Section 1.2) 
is the fact that sines and cosines are not localized in time, which can make local features in the seasonal 
component difficult to model. Consequently, we consider another approach to modeling the seasonal 
component. Specifically, we represent it using a regression linear spline with K knots. 

Specifically, let the linear spline function c(m), now considered as a function of a continuous variable m, 
be defined on the interval [0, L] as follows (see Friedman, Hastie and Tibshirani, 2001; Ramsay and 
Silverman, 2002; or Ramsay and Silverman, 2005):

                                                                                                              (5)

where β0, β1, and δk, for k = 1, ..., K, are parameters and (.)+ denotes the positive part of the expression inside 
the brackets. ξk, for k = 1, …, K, are (real or whole) numbers called knots which satisfy 0 ≤ ξ1 < ξ2 < ... < 
ξK < L. From the definition, it follows that the linear spline function is continuous on the interval [0, L]. 
Further, it is piecewise linear since it is a linear function on each of the intervals [0, ξ1), [ξ1, ξ2), …, [ξL, L] 
separately. The first derivative does not exist at the knots.  

One potential disadvantage of using the linear spline function (compared to sines and cosines of 
Section 1.2) is the fact that the linear spline function is not “periodic” with period equal to L. We suggest 
that periodicity be imposed by assuming appropriate constrains. Specifically, we require that:

c(0) = c (L),                                                              (6)
c(0)(1) = c (L)(1),                                                                  (7)

where c(0)(1) denotes the first right derivative at point 0 and c (L)(1) the first left derivate at point L. These 
constraints ensure that c(m) returns to the same value after period L (the first constraint) and that the 
“connection of the two ends of the cycle” is smooth (the second constraint).8 The two constraints reduce 
the number of parameters of the linear spline function by 2. Specifically, a linear spline function satisfying 
the constraints will be called a periodic linear spline, has 2 + K – 2 = K parameters and can be written 
as a linear combination of K basis functions. Figure 1 presents an example of a periodic linear spline.

7 For simplicity, we write S1,m instead of S1,m(t).
8 If the first knot ξ1  is placed at 0, then the first derivative of c(m) does not exist at 0.
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If the periodic linear spline is sampled at discrete values of m = 1, 2, …, L, it can be used 
as a representation of the seasonal component {S1,m(t)} of Formula (1). An appropriate choice of the position 
of the knots can help us to capture local features in the seasonal component. 

Figure 1   An example of a periodic linear spline (solid line) with L = 365 and three knots placed at 73, 110, 329 
(dashed vertical lines)

Source: Own construction

1.4 Periodic cubic spline
To ensure a more flexible shape of the function on the intervals [0, ξ1), [ξ1, ξ2), …, [ξL, L] and more 
smoothness at the knots, i.e. the existence of (at least some) derivatives at the knots, we can consider 
using cubic spline functions instead of linear ones.

Using an analogous notation as in Section 1.3, a cubic spline function with K knots 0 ≤ ξ1 < ξ2 < ... < ξK < L 
can be defined on the interval [0, L] as follows (see Friedman, Hastie and Tibshirani, 2001; Ramsay and 
Silverman, 2002; or Ramsay and Silverman, 2005):

                                                                                                               (8)

where β0, β1, β2, β3 and δk, for k = 1, ..., K, are parameters. From the definition, it follows that the cubic 
spline function is continuous on the interval [0, L]. It is a piecewise cubic polynomial since it is a cubic 
polynomial on each of the intervals [0, ξ1), [ξ1, ξ2), …, [ξL, L] separately. The first and second derivatives 
exist at the knots, whereas the third derivative does not.

Further, we require that:

c(0) = c(L),                    (9)

c(0)(1) = c(L)(1),                        (10)

c(0)(2) = c(L)(2),                       (11)

c(0)(3) = c(L)(3),                 (12)

where c(0)(1), c(0)(2), c(0)(3) denote the first, second and third right derivative at point 0, and c(L)(1), c(L)(2), 
c(L)(3) denote the first, second and third left derivate at point L. Analogously to Section 1.3, the constraints 
ensure that c(m) returns to the same value after period L (the first constraint) and that “the connection of 
the two ends of the cycle” is smooth (the second, third and fourth constraint).9 Using these constraints, 
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9 If the first knot ξ1  is placed at 0, then the third derivative of c(m) does not exist at 0.
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the number of parameters is reduced by 4. The cubic spline function which fulfills these constraints 
will be called a periodic cubic spline, has 4 + K – 4 = K parameters and can be written as a linear 
combination of K basis functions. Figure 2 presents an example of a periodic cubic spline.

If the periodic cubic spline is sampled at discrete values of m = 1, 2, …, L, it can be used as 
a representation of the seasonal component {S1,m(t)} of Formula (1).

If local features (sudden changes and bumps) are a priori expected to be present in some regions 
of the seasonal cycle, more knots can be placed in that region to allow for a more flexible representation 
of the seasonal cycle in that region (Ramsay and Silverman, 2005).

Figure 2   An example of a periodic cubic spline (solid line) with L = 365 and three knots placed at 73, 110, 329 
(dashed vertical lines)

10 For simplicity, we write S2,n instead of S2,n(t).

1.5 Model for weekly seasonality
To model the weekly seasonal cycle {S2,n(t)}, we consider only the most common approach based 
on dummy variables. Specifically, we write:10

                                                                                                             (13)

where αk, for k = 2, ..., 5, are parameters and λk, for k = 2, ..., 5, is a dummy variable which is equal 
to 1 if k = n, and to 0 otherwise. 

1.6 Model selection
To find an optimal model for {Xt}, various representations of the yearly seasonal cycle (dummy variables, 
Fourier basis, periodic linear splines or periodic cubic splines) as well as various numbers of parameters 
for the yearly seasonal cycle (i.e. various numbers of sines/cosines or various numbers of knots) can be 
explored. The selection of the best model from the candidate models can be based on information criteria 
such as the Akaike information criterion (AIC) or the Bayesian information criterion (BIC) which are 
defined as:

AIC = 2p – 2 . l ,                                       (14)

BIC = log(N) p – 2 . l ,                                                         (15)

Source: Own construction
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where p is the total number of estimated parameters in the model of Formula (1) and l is the natural 
logarithm of the maximized likelihood function. Models with the lowest values of AIC or BIC are 
considered as optimal models. 

The terms 2p and log(N) p in Formulas (14) and (15) can be regarded as penalties. Consequently, BIC 
penalizes a model with a larger number of parameters more heavily than AIC provided that log(N) > 2, 
which is the case of our data. AIC may lead to selection of too big a model. On the other hand, provided 
N is large enough, BIC may easily select too small a model. Consequently, we will work with both the 
criteria while selecting the optimal model, giving a little bit more preference to AIC.

A question arises as to what extent a model with the lowest value of AIC is better compared to another 
model M with a higher value of AIC. If the model with the lowest value of AIC is assigned “relevance” 
(weight) equal to 1, then the relevance of model M could be given as (Claeskens and Hjort, 2008):

                                                       (16)

where ΔAICM ≥ 0 is the difference between AIC of model M and AIC of the model with the lowest value 
of AIC. An analogous formula applies to comparing models by their BIC values. Namely, the “relevance” 
(weight) of model M is given as (Claeskens and Hjort, 2008):

                                                        (17)

where ΔBICM ≥ 0 is the difference between BIC of model M and BIC of the model with the lowest value 
of BIC.

2 EMPIRICAL ANALYSIS
In this section, we will use the above mentioned approaches to model yearly seasonality in the daily time 
series of realized volatility of several stock market indices: 

 S&P 500, DJIA and NASDAQ 100 represent the American stock market. 
 FTSE 100 represents the London Exchange. DAX, Euro STOXX 50 (both Germany), CAC 40 (France), 

AEX Index (Netherlands), Swiss Market Index (Switzerland), IBEX 35 (Spain) and FTSE MIB (Italy) 
represent the Continental European stock exchange. 

 Nikkei 225 (Japan), Hang Seng (Hong Kong), KOSPI Composite Index (South Korea), FT Straits Time 
(Singapore) represent the Asian stock exchange. 

 IPC Mexico and Bovespa Index represent the Mexican and Brazilian stock exchange. 
 All Ordinaries represent the Australian stock exchange and the S&P/TSX Composite Index 

the Canadian one.
The data cover the period from January 3, 2000 till July 30, 201711 and have been obtained from Heber 

et al. (2009). Specifically, realized volatility (from the open to the close of the trading day) is available 
for each of the 19 indices being given as the square root of the sum of squared 5-minute log returns.12 
Details about the calculation of the realized volatility can be found in Liu, Patton and Sheppard (2012). 

In Figure 3, we present the realized volatility time series for S&P 500, the logarithm of the time 
series and the annualized version of the realized volatility time series given in percentages obtained 
by multiplying the realized volatility time series by the square root of 252 and by 100. 

2
MAIC

−
Δ

2
MBIC

−
Δ

11 For some indices data are available only for shorter time spans.
12 A trading day, which has, for example, 6.5 hours, has a total of 78 5-minute log returns.
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We can see that periods of high realized volatility are present during the dot-com bubble (years 
2000–2001), during the stock market downturn in 2002 and especially during the U.S. subprime mortgage 
crisis (2007–2009), which overlaps with the global financial crisis (2007–2008) and the Great Recession 
(2007–2009). Increased levels of volatility can also be observed during the recovery from the Great 
Recession (2010–2012), during the Chinese stock market crisis (2015–2016) and the Russian financial 
crisis (2014–2017).

The phenomena of volatility clustering and mean-reversion can be clearly discerned from the figure, 
clusters of high volatility being followed by clusters of low volatility. No obvious yearly seasonal pattern 
in realized volatility can be seen in the figure.

In Table 1, descriptive statistics (mean, standard deviation, coefficient of variation, minimum, 
maximum, skewness and kurtosis) are given for the realized volatility time series of S&P 500, FTSE 100, 
KOSPI Composite Index 100 and Bovespa Index. We can see that the average values are quite similar for 
the four indices, the coefficients of variation ranging from 0.49 to 0.69. The unconditional distributions 
of the realized volatility time series are highly skewed and leptokurtic.

Analogous descriptive statistics for the natural logarithm of the four realized volatility time series 
are presented in Table 2. We can see that the logarithm of the realized volatility time series is more 
Gaussian. This is also in agreement with Figure 3. Consequently, in further analysis, the natural logarithm 
of the realized volatility time series will be used. This is no drawback since the natural logarithm has 
a straightforward interpretation, its change being directly related to percentage change in the original 
volatility time series.

Table 1  Descriptive statistics for four realized volatility time series

Table 2  Descriptive statistics for the natural logarithm of four realized volatility time series

Source: Own construction

Source: Own construction

Mean Standard 
deviation

Coefficient 
of variation Min. Max. Skewness Kurtosis

S&P 500 0.009 0.006 0.689 0.001 0.088 3.135 17.838

FTSE 100 0.008 0.005 0.623 0.002 0.068 2.910 16.168

KOSPI CI 0.010 0.006 0.616 0.002 0.077 2.461 11.753

Bovespa Index 0.013 0.006 0.486 0.003 0.082 3.492 21.714

Mean Standard 
deviation

Coefficient of 
variation Min. Max. Skewness Kurtosis

S&P 500 –4.886 0.553 0.113 –6.667 –2.430 0.410 0.313

FTSE 100 –4.985 0.506 0.101 –6.242 –2.688 0.514 0.194

KOSPI CI –4.778 0.526 0.110 –6.040 –2.563 0.362 -0.194

Bovespa Index –4.398 0.385 0.087 –5.756 –2.499 0.619 1.697
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2.1 Seasonality models
We assume the model of Formula (1) and work with the natural logarithm of realized volatility based 
on 5-minute log returns. For each of the 19 time series, each time series being associated with one stock 
market index, six different approaches to yearly seasonal cycle modeling will be assumed: 

1.) Intercept only, which corresponds to no yearly seasonality. This approach to yearly seasonality 
modeling will be denoted as N.

2.) Intercept + 11 dummy variables, which amounts to 12 parameters. Denoted as D.
3.) Fourier basis functions with K = 2, 3, 5, 8 and 11 (see Formula (4)), which corresponds to 5, 7, 11, 

17 and 23 parameters. Denoted as F5, F7, F11, F17 and F23.
4.) Periodic linear splines with the following number of knots (parameters): K = 5, 7, 11, 17 and 23. 

The knots are placed equidistantly, see below. Denoted as L5, L7, L11, L17 and L23.
5.) Periodic cubic splines with the following number of knots (parameters): K = 5, 7, 11, 17 and 23. 

The knots are placed equidistantly, see below. Denoted as C5, C7, C11, C17 and C23.
6.) Periodic cubic splines with the following number of knots (parameters): K = 5, 7, 11, 17 and 23. 

Expert placement of knots is used, see below. Denoted as E5, E7, E11, E17 and E23.
In approaches L and C, the knots will be placed equidistantly throughout the year so that the distance 

between two neighboring knots is constant, the first knot being placed at the beginning of the calendar year.

Figure 3   Time series of realized volatility of S&P 500 based on 5-minute log returns (top plot), the natural logarithm 
of the time series (middle plot) and the annualized version of the time series given in percentages 
(bottom plot).The ticks on the x-axis correspond to the start of calendar years

Source: Own construction
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13 Ramsay and Silverman (2005) state that a researcher may want to have more knots over regions where the function 
to be estimated exhibits the most complex variations. We presume that the knowledge of such regions is often a question 
of an expert understanding of the problem at hand. Consequently, different placements of the knots are expected for 
different applications and are subjective to some extent. We believe that December is a reasonable choice for the placement 
of more knots in our application.

Concerning approach E, the first knot is placed at the beginning of the calendar year and the second 
one at the start of December. Every further odd knot is placed within the interval from the start of 
the calendar year to the start of December (11-month interval) and every even knot is placed within 
the interval from the start of December to the start of the calendar year (1-month interval). In both these 
intervals the knots are placed equidistantly. Approach E thus places more knots to December than to any 
other month of the year. This is an example of an expert placement of the knots which can be supported 
by the fact that the end of the calendar year is a very special period overlapping with Christmas in many 
cultures and countries, and with an upcoming new year.13

Concerning the weekly seasonal cycle, two approaches will be assumed for its modeling: 
1.) No weekly seasonal cycle. Denoted as N.
2.) 4 dummy variables. Denoted as D.
The six approaches to modeling the yearly seasonal cycle will be explored in combination with 

the two possible approaches to modeling the weekly seasonal cycle. Table 3 provides a summary 
of the approaches explored. The approaches used for yearly seasonal cycle modeling are given in columns, 
whereas the approaches used for weekly seasonal cycle modeling are given in rows. The number in 
each cell is the total number of models explored for the given combination of approaches, the models 
in the cell differing in the number of parameters used for the yearly seasonal cycle model (5, 7, 11, 17 
or 23).

A given combination of a model for yearly seasonality and a model for weekly seasonality will by 
denoted, for example, as F11 + D, which means that Fourier basis functions with eleven parameters 
(including intercept) were used to model the yearly seasonal cycle and dummy variables were used 
to model the weekly cycle.

A total of 44 different models for the seasonal parts will be explored for each of the 19 time series 
of the natural logarithm of realized volatility. For each of the 44 models, the following ARMA model 
for {Et} (see Formulas (1) and (2)) will be considered: 

                                                                                                      (18)

since it provides a good approximation to the HAR model (Corsi, 2009) commonly used for realized 
volatility modeling. 

R software (R Core Team, 2017) and the following contributed R packages have been used in the 
analysis: forecast (Hyndman, 2017; Hyndman and Khandakar, 2008) and pbs (Wang, 2013).

Employing the Arima() function from the forecast package (Hyndman, 2017) Gaussian maximum 
likelihood estimation will be used to estimate the parameters of Formula (1). Further, the best combination 
of the yearly and weekly seasonal cycle (i.e. the best model) will be selected according to the value of AIC 
or BIC. The residuals of the selected model are checked whether they are uncorrelated, homoskedastic, 
normal and whether no outliers are present (see Section 2.3).

Since it is impossible to simply interpret the individual parameters of the Fourier or spline basis 
expansion, we will neither interpret the individual parameter estimates nor will we assess the accuracy 
of the estimates in our analysis. On the other hand, we will interpret the estimated seasonal cycle (i.e. a linear 
combination of parameters) and will assess the accuracy of the estimate of the seasonal cycle, se further.

1 1 2 2 6 6 1 1 ,      1, ,   ,t t t t t tE E E E t Nφ φ φ θ ε− − − −= + + + + = …ε
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2.2 Results for S&P 500
At first, results for the natural logarithm of realized volatility of S&P 500 will be presented. The best 

model among the 44 models of Table 3 according to both AIC and BIC is model E17 + D, i.e. model E17 
for yearly seasonality combined with model D for weekly seasonality. 

Figure 4 presents a naïve estimate of the yearly seasonal cycle14 and the estimated yearly seasonal cycle 
for the best model (E17 + D). The estimated cycle (for model E17 + D) has a minimum on December 24 
and a maximum on October 16. The shift from the minimum to the maximum value corresponds to 
a 140 percent increase of volatility. The estimated seasonal cycle exhibits a deep trough from December 
18 till the start of January. Another, higher and flatter, bottom in volatility occurs during May. Typical 
variations of the estimated seasonal cycle throughout the year correspond to an approximately 10 percent 
change in volatility. 

Table 3   Number of models used for the various combinations of approaches to yearly and weekly seasonal cycle  
  modeling. The models in each cell differ by the number of parameters used for yearly seasonal cycle 
  modeling

Source: Own construction

Source: Own construction

Yearly seasonal cycle

N D F L C E

Weekly 
seasonal cycle

N 1 1 5 5 5 5

D 1 1 5 5 5 5

14 A naïve estimate of the yearly seasonal cycle (including the intercept/level) is obtained by calculating the average of the 
time series separately for each calendar day of the year. In this way we get 365 average values, one average value being 
associated with one day of the calendar year.

Figure 4 Naïve estimate of the yearly seasonal cycle (gray) in the logarithm of realized volatility of S&P 500 
 together with the estimated cycle from the best model (E17 + D) according to AIC and BIC (black). 
 The three points on the estimated cycle correspond to calendar days (Jan 1, Jul 4 and Dec 25) where 
 in fact no trading ever happens due to public holidays
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Naive
AIV & BIC-best

Figure 5 presents a naïve estimate of the weekly seasonal cycle15 and the estimated weekly cycle from 
the best model (E17 + D). The highest level occurs on Thursday and the lowest on Monday, the shift from 
the minimum to the maximum value corresponding to an approximately 10 percent change in volatility.

Source: Own construction

Source: Own construction

15 A naïve estimate of the weekly seasonal cycle is obtained by calculating the average of the time series of the natural logarithm  
 of realized volatility separately for different days of the week (Monday, Tuesday, Wednesday, Thursday and Friday). Further,  
 the average for Monday is subtracted from the five averages (for Monday, Tuesday, Wednesday, Thursday and Friday).

Figure 5 Naïve estimate of the weekly seasonal cycle (gray) in the logarithm of realized volatility of S&P 500  
 together with the estimated cycle from the best model (E17 + D) according to AIC and BIC (black)

Table 4 presents the “relevance” (weight) for the best model according to AIC (BIC) in the given group 
of models associated with the cell of the table calculated according to Formula (16) (Formula (17)) with 
respect to the global best model according to AIC (BIC). In other words, the best model in the group of 
models is compared to the global best model (E17 + D) using Formula (16) (Formula (17)). The relevance 
for the cell which contains the global best model (E17 + D) is 1, the values of relevance in other cells 
being rather small. This suggests that the combination of approach E used to model the yearly seasonal 
cycle and approach D to model the weekly seasonal cycle performs considerably better than any other 
explored combination of approaches. 

Table 4   “Relevance” for the best model according to AIC or BIC in the given group of models associated with   
 the cell of the table calculated according to Formula (16) (AIC, the first number) and Formula (17) (BIC, 
 the second number) with respect to the global best model according to AIC or BIC

Yearly seasonal cycle

N D F L C E

Weekly 
seasonal cycle

N 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0

D 0, 0.03 0, 0 0, 0 0, 0 0, 0 1, 1
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To compare approaches to modeling the yearly seasonal cycle based on smooth functions, i.e. approaches 
F, C and E, in Figure 6, we present the estimated yearly seasonal cycle for the best F approach according 
to AIC, the best C approach according to AIC and the best E approach according to AIC. We can clearly 
observe that the advantage of the E approach is the expert placement of the knots which allowed for more 
flexibility of the seasonal cycle in December. On the other hand, in order to capture the trough in December 
with the use of Fourier basis functions, it would have been necessary to use a much larger value of K.

Figure 6 Comparison of the estimates of the yearly seasonal cycle in the natural logarithm of realized volatility 
 of S&P 500 for the AIC-best approach among the F approaches (black), the AIC-best approach among 
 the C approaches (dashed) and the AIC-best approach among the E approaches (dotted). The naïve  
 estimate is presented in gray

2.3 Results for all the indices
Table 5 presents the results for the 19 indices and the corresponding time series of the natural logarithm 
of realized volatility based on 5-minute log returns. Specifically, the number of time series is given for 
which the corresponding combination of the yearly and weekly seasonal cycle model resulted in the 
lowest value of AIC or BIC. 

Table 6 is constructed as follows. 19 tables analogous to Table 4 are constructed containing the values 
of “relevance” according to AIC and BIC. Each of the 19 tables corresponds to one specific time series. 
Further, for each cell of the table, we calculate (separately for AIC and BIC) the average value of the cell 
across the 19 tables, i.e. we obtain the average value of “relevance” based on AIC and the average value 
of “relevance” based on BIC. These average values are reported in Table 6.

The results from Tables 5 suggest that approach E is presumably the most appropriate approach for 
modeling the yearly seasonal cycle. It wins 17 times (out of 19) according to AIC and 6 times (out of 19) 
according to BIC. Even in terms of the “average relevance” (see Table 6) it performs very well. Model 
N for yearly seasonality also performs rather well as assessed by BIC. This suggests that if we use a very 
heavy penalty on the number of parameters, as is the case in BIC, no yearly seasonality is suggested as 
an appropriate model in some instances. The other approaches to modeling the yearly seasonality (D, 
F, L, C) do not perform very well, the reason presumably being that they are not capable of capturing 
the deep trough in the yearly seasonal cycle which occurs in the second half of December.

Source: Own construction
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Yearly seasonal cycle

N D F L C E

Weekly 
seasonal cycle

N 0, 3 0, 0 0, 0 0, 0 0, 0 0, 0

D 1, 9 1, 1 0, 0 0, 0 0, 0 17, 6

Source: Own construction

Source: Own construction

Table 5   Number of time series of the natural logarithm of realized volatility for which the corresponding  
  combination of the yearly seasonal cycle model and the weekly seasonal cycle model resulted in the  
  lowest value of AIC (the first number in the cell) or BIC (the second number)

Table 6   Average value of “relevance” according to AIC (first number) and BIC (second number); see text for details

Yearly seasonal cycle

N D F L C E

Weekly 
seasonal cycle

N 0, 0.16 0, 0  0, 0 0, 0 0, 0 0.02, 0

D 0.05, 0.49 0.05, 0.06 0, 0 0, 0 0, 0 0.89, 0.32 

For each of the 19 time series of the natural logarithm of realized volatility the following is reported 
in Table 7:

 Best: The best model according to AIC. 
 Day of year, min. and max.: The estimated day of the year (in the range 1–365) where the minimum 

and maximum value of the yearly seasonal cycle occurs according to the best model selected with 
the use of AIC.

 Day of week, min. and max.: The estimated day of the week (1 = Mon, 2 = Tue, 3 = Wed, 4 = Thu, 
5 = Fri) where the minimum and maximum value of the weekly seasonal cycle occurs according 
to the best model selected with the use of AIC.

 sd: The standard deviation of the estimated yearly cycle from the best model according to AIC. 
 R: The “relevance” calculated according to Equation 16 of the AIC-best model where no yearly 

seasonality is present with respect to the global AIC-best model. Low values of “relevance” suggest 
that yearly seasonality is present in the time series.16

 aver. std. err.: Average of 365 standard errors of the estimated yearly seasonal cycle for different 
days of the year.

 resid. diagn.: The assumption of no autocorrelation, homoskedasticity and normality of error was 
assessed in the AIC-best model using the residuals of the model. Formal hypothesis tests were not 
used since they would have large power due to the length of the time series and would lead to the 
rejection of the null hypotheses even for minor and practically irrelevant deviations from the null 
hypothesis. Instead, qualitative assessment with focus given on practically important deviations 
from the null hypothesis was used, employing autocorrelation function of residuals, autocorrelation 
function of squared residuals, QQ plots and time series of residuals. An “OK” in the column stands 
for satisfied assumptions. “SNN” stands for slight non-normality, “NN” for non-normality, “SH” 
for slight heteroskedasticity and “OUT” for outliers.

16 The X symbol in the R column implies that the estimation procedure did not converge while fitting the model with 
 no yearly seasonality.
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We can clearly see that according to AIC the model E17 + D performs mostly the best. The minimum 
of the yearly seasonal cycle occurs at the end of the calendar year in all the time series, the maximum 
occurring mostly in October or at the beginning of December or during January. Figure 7 presents the 
estimated seasonal cycles (disregarding the level of the cycle) in the best model according to AIC for 7 
different indices.

Concerning the weekly seasonal cycle, the lowest volatility occurs mostly on Mondays, while 
the highest occurs during the second part of the week (Wednesday, Thursday or Friday). 

The assumptions of no autocorrelation, heteroskedasticity and normality of errors and the presence 
of no outliers were reasonably satisfied17 in most of the AIC-best models, except for Euro Stoxx 50 (where 
more severe non-normality and outliers are present), Nikkei (where more severe non-normality is present) 
and KOSPI (which exhibits outliers).

Table 7  See text for details

Source: Own construction

Best 
Day of year, 

min. and 
max.

Day of week, 
min. and 

max.
sd R aver. std. 

error resid. diagn.

S&P 500 E17 + D 358, 289 1, 4 0.11 0 0.12 OK

DJIA E17 + D 358, 289 1, 4 0.10 0 0.11 OK

NASDAQ 100 D + D - 1, 3 0.09 X 0.13 SNN

FTSE 100 E17 + D 358, 289 1, 5 0.09 0 0.12 SNN

DAX E17 + D 360, 289 1, 4 0.09 0 0.12 SNN

Euro STOXX 50 E17 + D 359, 290 1, 5 0.11 0 0.10 NN, OUT

CAC 40 E17 + D 358, 288 1, 5 0.10 0 0.11 SH, SNN

AEX E23 + D 359, 283 1, 5 0.11 0 0.11 SNN

Swiss Index E11 + D 360, 27 1, 4 0.06 0 0.09 SNN

IBEX 35 E17 + D 358, 337 1, 4 0.08 X 0.12 SNN

FTSE MIB E17 + D 359, 337 1, 5 0.08 0 0.11 SH, SNN

Nikkei 225 E17 + D 359, 18 1, 5 0.07 0 0.09 SH, NN

Hang Seng E17 + D 358, 302 5, 4 0.07 0 0.10 SNN

KOSPI N + D - 1, 4 - 1 0.16 OUT

FT Straits Time E23 + D 360, 286 1, 3 0.06 0 0.09 SNN

IPC Mexico E17 + D 359, 19 1, 3 0.08 0 0.10 SNN

Bovespa E23 + D 360, 293 1, 4 0.10 0 0.07 SNN

All Ordinaries E11 + D 361, 277 2, 3 0.05 0.03 0.10 SNN

S&P/TSX E17 + D 358, 292 1, 3 0.09 0 0.13 OK

17 In the sense that no deviations or only slight deviations from the assumptions were detected.
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CONCLUSION
We have demonstrated the usefulness of various basis expansion methods in representing the yearly sea-
sonal cycle in the natural logarithm of realized volatility based on 5-minute log returns of 19 stock market 
indices. Cubic splines with an expert placement of knots seem to be an appealing approach which sug-
gests that yearly seasonality is present in most of the time series. These findings are important for future 
research since they play a crucial role in decisions regarding asset allocation and risk management, and 
should also be taken into the account while pricing options.

The presented approaches can potentially be used for modeling of other time series containing long 
seasonal periods such as daily time series of number of products sold, car accidents, electricity consump-
tion and traffic volume. 
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