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Abstract

Our aim in this paper is to show the use of survival Clayton copula as a suitable tool for modelling risk 
dependencies in insurance. A purpose-built simulation of an adequate upper tail dependence can be an important 
part of the aggregation of risks in an insurer’s internal models. The occurrence of extreme values of the aggregate 
random variable might have a very negative impact on the insurer when securing coverage of unexpected 
losses. The upper conditional quantile exceedance probability of the copula is a suitable indicator. In addition 
an analysis of its effect on the level of modelling of the risk scenario is available. This effect is measured using 
the Tail Value at Risk of the aggregate random variable. To simplify our description of the given principle for 
aggregating risks we will in this paper only consider the two-dimensional case. The programming language R 
was used to simulate the values of the joint distribution of the marginal random variables.
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INTRODUCTION  
The aggregation of risk is at the present time very topical in the insurance sector and much time  
is devoted to it in the context of risk management in insurers’ internal models. The preferred solution 
for risk aggregation is the use of multi-dimensional copula functions.  Many authors have covered this 
area. In the context of risk aggregation they describe the use of various copula functions and some have 
carried out comparisons with the approach based on the standard formula in the Solvency II directive 
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(Nguyen and Molinari, 2011; Eling and Jung, 2020; Marri and Moutanabbir, 2022; Ghosh, Chakraborty 
and Watts, 2022; Pfeifer, Strassburger and Philipps, 2020; Allen, Mcaleer and Singh, 2017). We should 
emphasise that insurers will develop their own copula functions to manage risk the most effectively 
(Milek, 2020). The classical approach attempts to choose a suitable copula function, reflecting the risk 
dependencies, using scatter plots of their values. Copulas can be constructed either non-parametrically or 
parametrically using the maximum likelihood method, good fit tests, or information criteria (Remillard, 
Genest and Beaudoin, 2009; Chen and Huang, 2007; Joo, Shin and Heo, 2020; Yang, 2022; Cuevas, Yela 
and Achcar, 2019). In many cases analyses of various dependence coefficients or association measures 
are used to construct suitable copulas (Adès, Provost and Zang, 2024; Gijbels, Veraverbeke and Omelka, 
2011; Nicolas and Garcin, 2021).

Rank correlation measures have a more important application, as for example in Spearman´s Rho, 
Kendall´s tau (Embrechts, Lindskog and McNeil, 2001). These measures can be used to characterize 
the trend of changes in the values of the marginal distributions in the analyzed ordered pairs. These 
association measures may not however capture tail dependencies which in the case of insurance risks 
are very important – see Figure 1.

Many authors therefore prefer various estimation approaches for determining the upper-tail dependency 
coefficients for a given copula function (Hua and Joe, 2011; Gijbels, Kika and Omelka, 2020; Charpentier 
and Segers, 2009; De Luca and Rivieccio, 2012).

An important indicator of the tail-dependency of the copula, or the joint distribution, is the upper 
conditional quantile exceedance probability cqepU(u) which we will go into in more detail later (Milek, 
2020; Mucha and Škrovánková, 2022). It relates to the answer to the question: What is the probability that 
the value of the second marginal distribution exceeds the 95% quantile given that the value of the first 
marginal distribution has already exceeded that quantile (Cuypers, 2020)? In the context of modelling 
risk dependencies with the help of copulas the value cqepU(u) of the copula is “handed over” to the 
generated joint distribution. This distribution has this indicator at the same level as the copula used. We 
could therefore say that it “hands over” certain risk information which is encoded in that copula function.

Figure 1	 Scatter plots of the values of a joint distribution with Kendall tau values 0.7, generated using the chosen  
	 copula functions

Source: Own construction, customized in R 



ANALYSES

322

An innovative approach in this area could indeed be to use the copula function as a tool to generate 
a given risk level scenario for the tail dependency, even though it is not evident in the scatter plot 
of the data. Based on this approach a given capital requirement represents a guarantee of covering 
unexpected losses even in the case of the occurrence of extreme values (Pinda, Mucha and Smažáková, 
2022). The mentioned conditional quantile exceedance probability could be the parameter of the risk 
scenario. The survival Clayton copula is the proposed tool for the modelling (Mucha, 2023; Hofert, 
Kojadinovic, Maechler and Yan, 2018). It is suitable for describing the upper tail dependency between 
the risks. It is also referred to as the HRT (heavy right tail) copula (Di Bernardino and Prieur, 2018). 
Depending on the parameter of the survival Clayton copula it is therefore possible to model various 
levels of the mentioned conditional quantile exceedance probability of the generated joint distribution. 
As the parameter θ → 0 the survival Clayton copula tends towards the position of the independent 
copula and as θ → ∞ it tends towards the position of the comonotonic copula. In this paper we will 
concentrate on analysing the calculation of the Tail Value at Risk of the aggregate random variable 
depending on the value of the parameter of the survival Clayton copula for selected marginal risk 
distributions. Our aim is to show the use of survival Clayton copula as a suitable tool for modelling 
risk dependencies in insurance.

1 METHODS AND METHODOLOGY OF ANALYSIS
A copula is a mathematical object which describes the dependency structure between risks and it is the 
base for determining the joint distribution of their marginal distributions. 

1.1 Copula functions
A two-dimensional copula is the joint distribution function of two equally distributed random variables 
U1 ∼ U(0; 1)  and U2 ∼ U(0; 1). We can express the copula C(u1; u2) as follows:

C(u1; u2) = P(U1 ≤ u1; U2 ≤ u2).                                                          � (1)

Sklar’s theorem provides the theoretical foundation for copula function theory, which makes clear the 
role of copulas in determining two-dimensional distributions in the context of their dependency structure. 
Let C be a two-dimensional copula and F1, F2 one-dimensional distribution functions. The function  
F(x1; x2) defined by form:	

F(x1; x2) = C(F(x1); F(x2)),                                                          � (2)

is the joint distribution function with marginal distribution functions F1, F2.
Given that we will be considering the Clayton copula, we will introduce a definition of Archimedean 

copulas. The key concept is a copula generator. Mathematically speaking a copula generator is a continuous 
decreasing function ϕ(⋅) : ⟨0; 1⟩ → ⟨0; ∞⟩, such that  ϕ(1) = 0 (if ϕ(0) = ∞, called a strict copula generator). 
The notation ϕ–1(⋅) : ⟨0; ∞⟩ → ⟨0; 1⟩, represents the inverse function to ϕ (if it is not a strict generator 
we need to use the pseudo-inverse function which takes the value zero everywhere in the interval  
⟨ϕ(0); ∞⟩). Then 

AC(u1; u2) = ϕ–1(ϕ(u1) + ϕ(u2)),                                                        � (3)

is a two-dimensional Archimedean copula (Cipra, 2015; McNeil, Frey and Embrechts, 2015).  
The generator for Clayton copula takes the form CLCϕ(u) =  ⋅ (u–θ – 1), with parameter θ > 0.  
In the two-dimensional case we can write this in the form:
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CLC
θ C(u1; u2) = (u1

–θ + u2
–θ – 1)–  .                                                          � (4)

1.2 The survival copula
Let C be a two-dimensional copula for which we have U ∼ C. Then V = (1 – U) ∼ , i.e. V = 1 – U =  
(1 – u1; 1 – u2), is a random vector whose distribution is given by the survival copula  corresponding to the 
copula C (Hofert, Kojadinovic, Maechler and Yan, 2018). We can also express the survival copula as follows:

(u) = (–1)|J| ⋅ C((1 – u1)I(1∈J), (1 – u2)I(2∈J)), u ∈ (0; 1)2 ,                                                        � (5)

where the sum is over all the subsets of the set {1, 2}, |J| is the number of elements of a given subset,  
I(j ∈ J) is the indicator of j ∈ {1, 2}. For the two-dimensional survival copula  we then have:

J = {{1; 2}; {∅}; {1}; {2}}, j ∈ {1; 2} ,                                                        � (6)

(u) = (–1)2 ⋅ C((1 – u1)1; (1 – u2)1) + (–1)0 ⋅ C((1 – u1)0; (1 – u2)0) + 
+ (–1)1 ⋅ C((1 – u1)1; (1 – u2)0) + (–1)1 ⋅ C((1 – u1)0; (1 – u2)1) ,                                                      � (7)

from which we obtain:

(u) = C(1 – u1; 1 – u2) + 1 – (1 – u1) – (1 – u2) = –1 + u1 + u2 + C(1 – u1;1 – u2) .             � (8)

If we denote the probability density function of the copula C as c, then for the probability density function 
of the survival copula corresponding to C we have:

(u) = c(1 – u1; 1 – u2), u ∈ (0; 1)2 .           � (9)

For the copula and survival copula the following relationships also apply:

P(U1 > u1; U2 > u2) = P(V1 ≤ v1; V2 ≤ v2) = (v1; v2) ,
P(V1 > v1; V2 > v2) = P(U1 ≤ u1; U2 ≤ u2) = C(u1; u2) .         � (10)

Figure 2	 Scatter plot of the generated copula values (on the left) and the corresponding survival copula values  
	 (on the right)

Source: Own construction, customized in R 
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These probabilities can be determined by statistical processing of the generated values (Figure 2).

1.3 Using copulas to simulate the values of the joint distribution
To generate the values of the marginal distributions and determine ordered pairs of the joint distribution 
what is important is the size of the values that are in a given pair. In the aggregation process these 
values are added together which then affects the value of the aggregate random variable. In aggregation  
by addition the order of the values in the marginal distributions is completely random. When using copula 
functions however the order is in a certain sense coordinated and hence this approach is considered  
to be more sophisticated.

1.3.1 Simulation of the values of the Clayton copula and the survival Clayton copula 
Before we present the algorithm for generating the values of the two-dimensional copula function using 
conditional probabilities, we will introduce some notation:

P(U2 ≤ u2 | U1 = u1) = C2|1 (u2 | u1) ,           � (11)

whereby we can also express this as:

C2|1 (u2 | u1) =  .           � (12)

The algorithm for generating values of the two-dimensional copula function C, i.e. the vector  
U = (U1, U2) ∼ C, respectively its values (u1, u2), is based on the Rosenblatt transformation.

1.	 We transform the vector u = (u1, u2) ∈ (0; 1)2 into the vector u' =(u1', u2') ∈ (0; 1)2, which we can 
write as U' = RC(U), so that:

 u1' = u1, u2' = C2|1(u2 | u1) = P(U2 ≤ u2 | U1 = u1). � (13)

2.	 We transform the vector u' =(u1', u2') ∈ (0; 1)2 into the vector u = (u1, u2) ∈ (0; 1)2 using the quantile 
function as follows:  

 u1 = u1', u2 = C2|1
–1(u2' | u1),� (14)

                             
which we can write as U = RC

–1(U') (Hofert, Kojadinovic, Maechler and Yan, 2018).      
 	                                        
For a random sample of values of the vector u = (u1, u2) ∈ (0; 1) for the Clayton copula we then have:

          � (15)
                             

The presented approach can also be applied to generate values of the survival Clayton copula using 
Formula (9). 
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For this two-dimensional copula function, namely for:

  ∼ V = 1 – U = (1 – u1, 1 – u2) = (v1, v2), we get:

         � (16)
                             

1.3.2 Generated values of the joint distribution using copula functions   
Using Sklar’s theorem and the inverse transformation method we obtain values of the joint two-dimensional 
distribution F as per the equations: 

Wi = Fi(Xi) ⇔ Xi = Fi
–1(Wi), i = 1, 2,                                                        � (17)

where:

W = (W1, W2) ∼ C; Wi ∼ U(0; 1), i = 1, 2.                                                        � (18)

Figure 3	 Generated values of the joint distribution using copula functions

Source: Own construction
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1.4 Conditional quantile exceedance probability (cqep)
The conditional quantile exceedance probability (cqep) is an important indicator regarding modelling tail 
dependencies between insurance risks (Milek, 2020; Mucha and Škrovánková, 2022). We can distinguish 
between the upper and lower conditional probability of exceeding the quantile, whereby for the upper 
version cqepU(u) we consider the values u ∈ (0.5; 1), respectively u → 1+, and for the lower version  
cqepL(u) the values u ∈ (0; 0.5),  respectively u → 0–. Just to recap, given the assumption U1 ∼ U(0; 1);  
respectively U2 ∼ U(0; 1), we have for their quantiles FU2

–1(u) = u; respectively FU1
–1(u) = u. For cqepU(u) 

copulas we get the result:

� (19)
                             

                                                        � (20)

The copula indicator CcqepU(u) therefore expresses the probability of exceeding the quantile FU2
–1(u) = u  

of the random variable U2 ∼ U(0; 1) on the assumption that the quantile FU1
–1(u) = u of the random variable 

U1 ∼ U(0; 1) was exceeded.
By analogy we can derive an expression for the lower conditional quantile exceedance probability 

cqepL(u) of the copula:

                                � (21)

                                                       � (22)

For the joint distribution with marginal distributions of the random variables X1; X2, which we generate 
based on the given copula function, we get for the conditional quantile exceedance probability cqepU(u) 
using Sklar’s theorem the following:

� (23)
                             

The joint distribution indicator JDcqepU(u) expresses the probability of exceeding the quantile  
FX2

–1(u) = 2xu of the random variable X2 on the assumption that the quantile FX1
–1(u) = 1xu of the random 

variable X1 was exceeded.
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By analogy we can also derive a formula for the lower conditional quantile exceedance probability 
JDcqepL(u) of the joint distribution:

                   � (24)

The upper conditional quantile exceedance probability CcqepU(u) and JDcqepU(u) can be determined 
statistically from their generated values, Figure 4. It is clear from this that the joint distribution retains 
the same value for the conditional quantile exceedance probability as the copula used to generate the 
values. It can be asserted that the copula “passes to the joint distribution particular genetic information” 
concerning the tail dependencies, respectively a particular risk scenario, and we have:

CcqepU(u) = JDcqepU(u), respectively CcqepL(u) = JDcqepL(u) .                                                        � (25)

1.4.1 Conditional quantile exceedance probability for the survival Clayton copula   
To derive a formula for calculating CcqepU(u) for the survival Clayton copula we will use the fact that it 
is a rotated copula with respect to the Clayton copula. Let C be a two-dimensional copula and let U ∼ C. 
For r ∈ {0; 1}2, we call rotr(C) the rotated copula with regard to C, if U ∼ C this is equivalent to:

((1 – r1) ⋅ U1 + r1 ⋅ (1 – U1); (1 – r2) ⋅ U2 + r2 ⋅ (1 – U2)) ∼ rotr(C) .                                                     � (26)

If the copula C has probability density function c, the probability density function of the rotated copula 
rotr(C) is as follows (Hofert, Kojadinovic, Maechler and Yan, 2018):

rotr(c)(u) = c((1 – r1) ⋅ u1 + r1 ⋅ (1 – u1); (1 – r2) ⋅ u2 + r2 ⋅ (1 – u2)); u ∈ (0; 1)2 .                                     (27)

Figure 4	 Graphical interpretation of CcqepU(u) (on the left) and JDcqepU(u) (on the right) as scatter plots  
	 of the generated values of the copula and the joint distribution

Source: Own construction
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It is obvious that the survival Clayton copula is a 180º rotated copula with respect to the Clayton 
copula. Hence we can obtain the following expression for the values of the vector r = (1; 1):

(1 – U1; 1 – U2) = 1 – U = V ∼ rot(1;1)(C) =   ,                                                        � (28)

(v) = rotr (c)(v) = c(1 – u1; 1 – u2); v ∈ (0; 1)2 .                                                        � (29)

Given the above we have for the value of the conditional quantile exceedance probability for the 
survival copula cqepU(v):

cqepU(v) = CcqepL(1 – v); v ∈ (0.5; 1), v = 1 – u .                                                        � (30)

We can also derive this as follows, where we treat the survival copula  as a copula using Formula (8):

� (31)
                             

For the lower conditional quantile exceedance probability of the Clayton copula CLCcqepL(u), given 
Formula (22), we get:

                                   � (32)

and for the upper conditional quantile exceedance probability of the survival Clayton copula  
SCLCcqepU(1 – u) we get using Formula (31):

                                  � (33)

When modelling a risk scenario represented by the value SCLCcqepU(v) it can be identified with regard 
to the parameter of the survival Clayton Copula using Formula (33).

2 RESULTS AND DISCUSSION
In this section we will deal with a practical example of the aggregation of two non-life insurance risks 
X1, X2 using the survival Clayton copula. From the statistical data used we have assumed their marginal 
distributions, for parameter estimation for the truncated Pareto distribution see Aban, Meerschaert and 
Panorska (2006):

 X1 ∼ LN(12; 1), X2 ∼ Patruncated(100 000; 1 000 000; 1.5),                                                        � (34)

with characteristics:
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E(X1) = 268 337.3, E(X2) = 270 270.3, 1x0.95 = 843 060.6, 2x0.95 = 727 546.7 .                                          (35)

To start with we will present the classical approach to aggregation of these risks based on fitting a 
suitable copula given the values of their marginal distributions, Figure 5. Using the package VineCopula 
and the function BiCopEstList, we chose, based on the information criteria AIC and BIC, the best 
model for the copula function given the presented values (Nagler et al., 2023). When using pseudo-
observations obtained in accordance with the principle for constructing empirical distribution functions 
using Formula (36) we need to consider their independence, Figure 6 (on the left).  

Remark 1: We will consider a random vector X = (xi1; xi2), i = 1, ..., n, where n is the number of points 
in the scatter plot. We obtain the pseudo-observations using the following: 

                                  � (36)

Figure 5	 Graphical representation values of the risks X1, X2

Figure 6	 Graphical representation of the pseudo-observations and scatter plot of their joint distribution simulated  
	 using a chosen Normal copula

Source: Own construction, customized in R 

Source: Own construction, customized in R 
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where rij is the order of precedence of xij amongst all the xkj, k = 1, ..,n (Hofert, Kojadinovic, Maechler 
and Yan, 2023).

We chose as the most suitable a Normal copula with parameter ρ = 0.009, where, as ρ → 0, it converges 
to the independent copula confirming our earlier assumption. We obtain the aggregation of the risks 
using the joint distribution simulated using this copula and by addition the points shown in the scatter 
plot on the right of Figure (6). We determine the values of the aggregate variable  using the following:  

si = xi1 + xi2, i = 1, ..., n ,                                                        � (37)

where: xi1, xi2 are elements of the random vector of the generated joint distribution.
In order to measure the effect of the aggregation achieved using the chosen copula function we use 

the risk measure TVaR (Bargés, Cossete and Marceau, 2009). This represents the expected value of the 
aggregate variable on the assumption that its quantile sp was exceeded. We write this as:

TVaRp(S) = E(S | S > sp) .                                                        � (38)

In the classical approach to risk aggregation using a Normal copula function used by us so far, we 
calculated the value of this measure by simulating the joint distribution using the library Copula:

NormalTVaR0.95(S) ≈ 2 343 729 .                                                        � (39)

Insurers’ internal models make use of this risk measure to determine the capital required to cover 
unexpected claims, respectively losses. For our purpose we will interpret it as the highest possible loss 
which may arise with probability greater than 0.95, i.e.

P(S ≤ NormalTVaR0.95(S)) > 0.95 .                                                       � (40)

We will now consider an innovative approach to aggregating risk using the survival Clayton copula. 
As opposed to the classical approach we will purposefully model a given risk level scenario for the tail 
dependency such that a guarantee of covering the highest possible loss is achieved even in the case 
of the concurrent occurrence of extreme values of the aggregate risk. Their occurrence can have fatal 
consequences for the insurer leading even to insolvency. We will in the conclusion compare the results 
from the two approaches.

The conditional quantile exceedance probability cqep is an important indicator of the level of tail 
dependence. Given the aggregation of risks present in insurance we concentrate on analysing its upper 
version cqepU, Formulas (23) and (33). 

In the case of the survival Clayton copula the value SCLCcqepU(v) depends also on its parameter θ.  
We show this dependence also in the context of dependence on the level of the quantile v in Figure 7. 

From this visualisation we get some very interesting information, namely that for θ ≥ 3 the value 
cqepU(v) is the same for all levels of the quantile.

Remark 2: The graph of cqepU in Figure 7 for v = 0.99 is shown below for θ < 3.
To illustrate the results shown we give the coordinates of some of the points in the graph [θ; cqepU(v)],  

for example [3; 0.794], [5; 0.871], [10; 0.933], [15; 0.955], [30; 0.9772]. 
It is clear that as the value of θ for the survival Clayton copula increases so also does the value 

cqepU(v). We recall that the generated joint distribution has the same value for this indicator as the copula 
which we used in the simulation. For θ = 3 we have SCLCcqepU(v) = JDcqepU(v) = 0.794 for all levels of the 
quantile v. We can interpret this as meaning that the probability of exceeding the quantile FX2

–1(v) = 2xv 
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of the random variable X2 assuming that the quantile FX1
–1(v) = 1xv of the random variable X1 is exceeded  

is equal to 0.794.
If we consider the points in the scatter plot of the joint distribution where the quantile 1xv of the 

random variable X1 was exceeded, then for 79.4% of these the quantile 2xv of the random variable X2 was 

Figure 7	 Graphical representation of the dependence of cqepU(v) on the parameter of the survival Clayton copula  
	 for various levels of the quantile xv of the marginal distributions 

Figure 8	 Scatter plot of the survival Clayton copula for various values of its parameter 

Source: Own construction, customized in R 

Source: Own construction, customized in R 

Parameter of survival Clayton copula Parameter of survival Clayton copula
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also exceeded. This indicator together with the parameter θ of the survival Clayton copula represent  
a particular risk scenario for modelling the tail dependency of the aggregated risks. 

For clarity we show a scatter plot of the survival Clayton copula according to the value of its 
parameter θ, Figure 8. Information as to the tail dependency hidden in this copula function is passed  
to the generated joint distribution.

Figure 9 shows scatter plots for the joint distribution in respect of each copula function in Figure 8.

It is obvious that as the parameter of the copula increases the modelled tail dependency is demonstrably 
more evident. 

Remark 3: It is recommended that the visualisation on the scatter plot be seen in the context of the 
characteristics of the marginal distributions, respectively in the context of the range of both axes.

By choosing a suitable value of the parameter of the survival Clayton copula we can purposefully model 
a considered risk scenario for the aggregate distribution of given risks. As we have already mentioned, 
we will measure the effect of applying a given risk scenario using the risk measure TVaRp(S). One can 
assume that with an increase in the value of the parameter of the survival Clayton copula θ, respectively 
with an increase in the conditional quantile exceedance probability JDcqepU(v), the value TVaRp(S) of the 
aggregate distribution will also increase.

The values of TVaRp(S) for p ∈ {0.9; 0.95; 0.99} are shown in Table 1.
The dependence of TVaRp(S) on the parameter of the survival Clayton copula θ is shown graphically 

in Figure 10.

Figure 9	 Scatter plots of the joint distribution generated by the survival Clayton copula

Source: Own construction, customized in R 
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Table 1 Values of TVaRp(S) obtained by aggregation using the survival Clayton copula

θ 0.1 1 3 5 10 30

TVaR0.9(S) 1 793 981 2 021 891 2 118 868 2 132 683 2 139 379 2 141 596

TVaR0.95(S) 2 419 258 2 837 231 2 986 344 3 007 149 3 015 927 3 017 989

TVaR0.99(S) 4 566 745 5 779 918 6 096 432 6 127 033 6 145 136 6 149 955

Source: Own construction

It is clear from the presented results that the value TVaRp(S) is, for values of the parameter  
of the survival Clayton copula θ ≥ 3, at a “stable” level. If θ = 3 the largest possible aggregate loss  
SCCTVaR0.95(S), which can occur with probability greater than 0.95, is 2 986 344. We obtained the values 
shown by carrying out  simulations of the values of the joint distribution of the marginal risks, respectively 
of the aggregate variable using the survival Clayton copula. To get more accurate results we carried out 
this series of simulations 5 000 times and the resulting value of SCCTVaRp(S) was taken as the average  
of the values obtained from each series.

CONCLUSION
This paper has presented an innovative approach to the aggregation of risks using a survival Clayton 
copula. Specific modelling of a given risk scenario, dependent on the parameter of the copula, is important 
particularly from the point of view of the occurrence of extreme values of the aggregate risk. The upper 
conditional quantile exceedance probability cqepU(v) is an authoritative indicator of the simulated tail 
dependence. We used the risk measure TVaRp(S) to measure the effect of the achieved aggregation.  
It represents the largest possible aggregate loss which can occur with probability greater than p. By setting 
up a capital requirement at this level it would be possible to guarantee the fulfilment of the insurer’s 
liabilities at the chosen significance level p.

Given the results obtained for TVaRp(S) we can assert that the parameter of the survival Clayton 
copula θ = 3 secures a risk scenario model with an “adequate” tail dependence. If we compare 
the value SCCTVaR0.95(S) ≈ 2 986 344 obtained this way with that using the classical approach  
NormalTVaR0.95(S) ≈ 2 343 729 we see that there is a significant difference. By specifically modelling larger 
(extreme) values arising in the aggregated pairs of the joint distribution we have produced a prediction 
of the possible occurrence of larger of the largest aggregate losses TVaRp(S).

Figure 10	 Values of TVaRp(S) for p ∈ {0.9; 0.95; 0.99} depending on the parameter of the survival Clayton copula

Source: Own construction, customized in R 

Parameter of survival Clayton copula Parameter of survival Clayton copula
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If instead we look at the value obtained using the parameter θ = 0.1 for the survival Clayton copula, 
namely SCCTVaR0.95(S) ≈ 2 419 258 we could assert that it is comparable with the value obtained using 
the classical approach. As the value of the parameter θ → 0 the survival Clayton copula tends towards the 
position of the independent copula. This is in the context of assuming use of the Normal copula estimated 
from data using pseudo-observations. The choice of the level of the modelled scenario is up to experts, 
or it may follow from legislative requirements concerning own appraisal and the management of risk  
in an insurer’s internal models. For the latter use is made of their own copulas for aggregating risk, 
whereby the risk measure TVaRp(S) is, as already mentioned, also used to determine the capital required 
to cover unexpected losses. For some risks it is common practice to show their values in the form of profits 
and losses, i.e. they appear as negative and positive values. Our presented approach can of course also  
be applied to such models.
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