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Abstract

In Statistika: Statistics and Economy Journal No. 4/2015 (pp. 39–58), author’s paper Segmented Regres-

sion Based on B-splines with Solved Examples was published. Use of B-spline basis functions has many 

advantages, the most important being a special form of matrix of system of normal equations suitable 

for quick solution of this system.

The subject of this paper is to explain how that segmented regression can be mathematically developed 

in other way, which doesn’t require the knowledge of relatively complicated theory of B-spline basis func-

tions, but is based on simpler apparatus of cut-off polynomials. The author considers a detailed calcula-

tion of matrix of system of normal equations elements and elaboration of so called polygonal method, 

as his contribution to issues of segmented regression. This method can be used to automatically obtain 

required values of nodal points. Author pays major attention to computing elements of matrix of system 

of normal equations, which he also developed as computer program called TRIO.
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INTRODUCTION

This work deals with segmented regression based on splines as cut-off polynomials in three particular 

cases, so-called linear, quadratic, and cubic (segmented) regression. We introduce the so-called poly-

nomial method of parametric-variable value assignment to experimentally obtained points (which lie 

 generally in        of integer dimension m ≥ 1), augmented with the computation of the so-called knot values 

of the variable corresponding to the division of these points into groups (segments).

To improve the numerical stability of parametric equations of the regression curves, we describe 

a transformation of the initial interval into a unit interval. Lastly, we choose the optimal regression curve 

for a given problem according to the measure of the determination indices of the three regression cases 

mentioned above.

Segmented regression can also be based on so-called B-spline functions. Through this method 

the matrix of the system of normal equations tridiagonal (for linear regression), five-diagonal (for quadratic 

regression), or seven-diagonal (for cubic regression) that enables a less elaborate solution to the given 

system, can be applied, see Kaňka (2015).
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1  NORMAL EQUATIONS

Let n ≥ 2 be an integer, in the Euclidean space      (m > 1 integer) let us consider n points Pi = xj
( i ) 

(i = 1, ..., n; j = 1, ..., m), not necessarily distinct (except for the case when all would be equal). Besides  

these points, for which we assume that xj
( i ) are real random variables depending on a real variable t e.g. 

the time, we consider the so-called knots T0 < T1 < ... < Tk , where k ≥ 1 is an integer, the so-called 

complementary knots T0 < T1 and Tk+1 > Tk. The points T1 < T2 < ... < Tk are called main knots.

In the intervals (Tl–1, Tl), l = 1, ..., k + 1, where the variable t changes, let us consider the increasing 

sequence tl,1 < tl,2 < ... < tl,n(l),n(l) ≥ 1 integer, and let to every such member correspond exactly one point 

xj
( l  w ), w = 1, ..., n(l). It holds then that                      The knots form the boundaries of the intervals, 

in the union of which we shall consider, depending on the chosen number Q                the following 

real-valued functions of the real variable t

where γj
(  1  ) ,  γj

(  2   ) ,..., γj
(  k   +    Q     +   1) are real parameters, i.e., linear (for Q = 1), quadratic (for Q = 2), and cubic 

(for Q = 3) splines in the form of so-called cut-off polynomials. By the symbol (x)+ we will understand 

the following real-valued function of a real variable:

Instead of                        we shall write in short 

Example 1.1

Let                                                           where                                                      There is (see formula 1):

thus (if we denote                                                                    )

We shall assume that the observed process is additive, i.e., for every possible value j, l, w the following 

holds:

where          are identically distributed random variables with the constant variance. Then we may obtain 

the estimates                                      of the parameters                                       by the least squares method:

 = ( )+1
=1 .Σ

   
    

(1)
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By partial derivation we get for                           that:

for 

(when we put                            then                                   

Case A:                    shall lead to (see formula 2, without the multiplier 2 on the right side 

of the equation):

In the second sum in the square brackets we will change the summation index from             to 

                                                     with proper adjustments to the summed expression:

where:

and

(2)

(3)

(4)

(5)
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Case B:                                           shall analogously lead to (see formula 3):

where:

and

Example 1.2

Let k = 2, Q = 3, hence k + Q + 1 = 2 + 3 + 1 = 6. We are to determine mpq for p = 3, q = 6,  thus m36, and 

also zpj = z3j. It corresponds to Case A together with A2 hence, according to (4):

and, according to (5):

Further, we are to determine mpq for p = 6, q = 3, that is m63, and also zpj = z6j. It corresponds to Case B 

together with B1 hence, according to (6):

and, according to (7):

It holds that m36 = m63.

(6)

(7)
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Furthermore, we are to determine mpq for p = q = 5, that is m55, and also zpj = z5j. It corresponds 

to Case B together with B2 hence, according to (6):

and, according to (7):

Lastly, we are to determine m11 It corresponds to Case A together with A1 hence, according to (4):

This result holds for k ≥ 1 arbitrary, independently of Q                  . 

We proceed in the minimization of Uj It is known from the general theory of mathematical analysis 
that a necessary condition for Uj as a function of the parameters                               to attain its

minimum is the system of equations            for                         (see (2), (3)). Based on the

aforementioned results (see Cases A and B), we arrive at the system of k + Q + 1 linear equations for

the estimates 

where:                                is a                                     matrix, and                              and

                               are                         matrices. The equations of the system (8) are called normal

equations. We can easily verify that M is a symmetric matrix.

By solving the system of equations (8) we get the sought estimates                                 of the para- 

meters                                   in the linear combination gj(t), see (1), t                . To these estimates we 

get the corresponding regression splines (linear for Q = 1, quadratic for Q = 2, and cubic for Q = 3) for 

t                     through the equation:

To sum up, (for j = 1, ..., m) these equations represent the parametric expression of a curve 

in        = (0; x1, x2, ..., xm) that is the output of the regression model for the observed process. In short, we 

shall call it a regression curve (linear for Q = 1, quadratic for Q = 2, and cubic for  = 3).2

(8)

(9)

T0, Tk + 1

T0, Tk + 1

2    Literature: Spline functions – Bézier (1972), Böhmer (1974), Kaňka (2015), Makarov, Chlobystov (1983), Schmitter, 

Delgado-Gonzalo, Unser (2016), Sung (2016), Spät (1996), Vasilenko (1983), Wang, Wu, Shen, Zhang, Mou, Zhou (2016); 

Cut-off polynomials – Meloun, Militký (1994); Segmented regression – Feder (1975), Guzik (1974), Seger (1988).
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2 POLYGONAL METHOD

For greater clarity, we shall confine ourselves to the plane    2.

In    2 let us consider the connected oriented graph G = [A, B], with the set of vertices A = {1,2,3, ..., n}, 

n ≥ 2, B = {(1,2),(2,3), ..., (n – 1,n)} is the set of the (oriented) edges. We can imagine that the planar  

polygonal trail created like this and having its initial point in 1 and end point in n represents an ideal-

ized route of a car moving at a constant speed that started from place 1 and ended the journey at place n. 

Each vertex of the graph can be regarded as an experimental point, the coordinates of which are 

obtained by measuring its distance (e.g. in km) from the left and bottom edge of the map. We divide 

the graph vertices into k + 1 groups (k ≥ 1) by n(l) ≥ 1 points xj
(  l  w   ) (l = 1, ..., k + 1; w = 1, ..., n(l); j = 1,2) 

in such a way that it holds that:

(such a division might be caused, e.g., by the difficulty of the corresponding road terrain), and assign 

to them (increasing) values tlw (in km), where tlw denotes the length of the passed route from the start 1 

to the place xj
(  l  w   ), which could be regarded as a spot for a short break.

For l = 1, ..., k + 1 we place the values tl1 < tl2 < ...< tl,n(l) into the interval  Tl–1, Tl). Meanwhile, we 

will demand that the sequence of points T0,T1, ...,Tk,Tk + 1 is increasing and it holds that Tl–1 ≤ tl1 for 

l = 1, ..., k + 1(T1, ...,Tk are called main and the points T0 < T1 and Tk + 1 > Tk complementary knots for 

the observed drive; compare with Section 1).

It gives sense to set T0 = 0 then further it follows from the relation Tl tl + 1,1 after substituting for 
Tl = tl,n(l)  + pl the inequality  tl,n(l)  + pl tl + 1,1, thus pl tl + 1,1 –  tl,n(l)  . Let:

and p =  P  (by the symbol  P  we shall understand the integer part of the corresponding real number). 

If p ≥ 1, then we set pl = p; we shall return to the case p = 0. 

If we disregard the car drive example, we can say that there exists a certain automation for “operat-

ing” variable value assignment to experimentally obtained points divided in a certain way into groups, 

followed by the computation of so-called knots which define the interval of the assigned variable to the 

given group. We shall call this automation in short the “polygonal method”. This procedure is imple-

mented in the computer program TRIO, which is able to solve regression problems for Q                 in 

the plane     2 and in the space     3 as well.

Example 2.1

Let us consider in    3 the points xj
(  l  w   ) (l = 1,2,3; w = 1, ..., n(l), where n(1) = 2, n(2) = 3, n(3) = 2; j = 1,2,3), 

divided into three groups:

→ →

→

(10)
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According to the polygonal method, we assign to them (increasing) values of an operating variable 

(for example, time):

According to (10), there is P = min{0.8325,0.7939} = 0.7939, hence p =  P  = 0.

We proceed further as follows. We substitute xj
(  l  w   ) with points xj

(  l  w   )     = L . xj
(  l  w   ), where L > 1 is sufficiently 

large, and assign to them through the polygonal method (increasing) values of an operating variable 

tlw = 10 . tlw. In this way we obtain P = min {5.3243,2.9390}, thus p =  P  =2. We get the knots 

T0 = 0,T1 = 5,T2 = 57,T3 = 75, which correspond to the initial knots T0 = 0,Tl =     (L = 10), that is, the points 

T0,T1 = 0.5,T2 = 5.7,T3 =7.5, through which we carry out the sought segmented regression. The program 

TRIO has this procedure built in.

3 TRANSFORMATION OF THE PARAMETRIC VARIABLE

The elements of the matrix M and the vector Zj of the system of normal equations (see (8)) are struc-

tured in such a way that reflects the fact that we are working with splines based on cut-off polynomials. 

To increase the numerical stability of the parametric equations of the regression curve (see (9)), which 

is the output of the given regression mode, the scientific literature proposes to implement a transforma-

tion of the corresponding parameter into a, for example, unit-length interval (if the length of the initial 

interval is greater than 1).

Let us deal with such a transformation in the case of, for example, quadratic regression, i.e., when 

Q = 2. Let us write the matrix of the system of normal equations M = (mpq)1≤p,q≤k + 3
 in the following form:

where:

and let us write the k + 3-dimensional vector Zj = (zpj)1≤p≤k + 3
 as:
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If we subject every value tlw (l = 1, ..., k + 1; w = 1, ..., n(l)), including the knots T0,T1, ...,Tk,Tk + 1, 

to the transformation

where K = 1/(Tk + 1 – T0), the matrix M transforms into:

and Zj transforms into Z'j = (z1j, Kz2j, K
2Ej). Now, if the (k + 3) – dimensional vector:

is the solution of the system of normal equations, the following equality holds:

which is equivalent to the equality:

Hence, it follows that the vector                          meets the equality                The equation for 

                               of the quadratic regression spline with this vector is the cut-off polynomial:

The equation (12) for                              represents the same regression curve in       = (0; x1, x2, ..., xm) 
as the equation with the untransformed parameter:
                                                                                                                                                             

.

We obtain analogous results for the case when Q = 1 or Q = 3, as well.

4 SOLUTION TO PARTICULAR PROBLEMS

Example 4.1

We are supposed to solve a problem in which we reflect the aforementioned procedures. Our results 

were obtained by the computer program TRIO, created by the author of this article for the purposes 

of segmented regression, without which particular computations would be unfeasible by hand.

(11)

(12)
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We assume that over time period from 6 am the values of the following three indicators: air tempera-

ture, air pressure and wind speed. The result of this measurement can be seen in Table 1.

In     3 (hence, j = 1, 2, 3) we have 12 experimentally obtained points, split in four groups (hence, k = 3) 

by the three points (we may call them morning, noon, evening and night group):

to which we assign the following values of a fictitious time:

it holds that ∑               ∑                                            which is the total number of considered 

points the values of which may be T1 = 4, T2 = 7, T3 = 10, together, for example, with additional time 

moments T0 = 1 and T4 = 13.

For example, for Q = 1, the matix M of system (8) is a (k + Q + 1) × (k + Q + 1) = 5 × 5 matrix. To save 

space, we neither give its full expression, nor for the 5-dimensional vectors Z1, Z2 and Z3 on the right-hand 

side of this equation. This computationally intensive work was conducted by the computer program TRIO, 

that the author of this article created for the purposes of segmented regression on the basis of B-splines.

Nevertheless, for demonstration purposes, let us compute the element m43 of M and the element z53 

of Z3. As Q + 1 = 2 < 3 = q ≤ k + Q + 1 = 5, there will be, according to (6):

Time [h] Temperature Pressure Wind

Real Fictive [°C] [hPa] [m/s]

6 1 15 800 5

8 2 16 850 4

10 3 17 900 3

12 4 22 1 000 2

14 5 28 1 030 1

16 6 26 1 020 2

18 7 20 950 3

20 8 19 900 3

22 9 18 890 3

24 10 16 840 4

2 11 15 820 4

4 12 13 810 5

Table 1  Meteorological data

Source: M. Kaňka

(13)

(14)
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as M is symmetric, and further:

The computer program TRIO provides the parametric equations of the resulting (for our case Q = 1, 

linear) regression curve that we do not present here to save space.

The computation of the so-called determination indices, which is also provided by the program TRIO, yields 

for the aforementioned experiment (where Q = 1) the values 

This means that approximately 75% variability ofthe observed values x1, 93% variability of x2 and 90% 

variability of x3 can be explained bya linear regression model. For Q = 2 and Q = 3 the program TRIO 

gives the following determination indices, see Table 2.

Table 2  Determination indices describing variability of observed values

Source: M. Kaňka

Regression I2

    

x1
I2

    

x2

 

I2

    

x3

 

Q=1 0.7539 0.9296 0.9009

Q=2 0.9302 0.9748 0.9179

Q=3 0.8998 0.9774 0.9474
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With respect to the determination indices, one can consider a certain “optimal regression curve” 

the equation of which for x1 is based on quadratic regression (Q = 2), the equation for x2 and x3 on cubic 

regression (Q = 3):

For example, for t = 8 we get the point (18.6139, 914.9777, 3.0585) on the optimal regression curve, 

which lies “near” the point (19, 900, 3) to which the value of the parameter belongs. Or for t = 4.5 we 

obtain the point (24.5105, 1020.3789, 1.4822) on the optimal regression curve. We may draw the conclu-

sion that at 1 pm local time, the air temperature was approximately 25°C, the air pressure approximately 

1020 hPa and the speed of the wind approximately 1 m/s.

Example 4.2

We shall solve the problem from Example 4.1 with the help of the polygonal method together with a 

transformation of the parametric variable (see Sections 2, 3). We assign to the points (13), which were 

arranged into four groups (k = 3), values t:

We easily find out that the number tlw  expresses the length of the polygonal trail measured from 

the initial point xj
(  11   ) to the considered point xj

(  l  w   ) (l = 1,2,3,4; w = 1,2,3), see (13). According to (10), 

in this case there is:

thus p =  P  = 50, hence the knots of the problem are T0 = 0,T1 =  100.04  + 50 = 150, 

T2 =   241.03   + 50 = 291, T3 =   371.35   + 50 = 421, T4 =   451.67   + 50 = 501. Through the transformation   

t' =Kt, where K = 1/(Tk + 1 – T0) = 1/(T4 – T0) = 1/501, the latter values of tlw are mapped onto 

t'lw, = Ktlw  = tlw /501 and the knots T0 = 0,T1 = 150, T2 = 291, T3 = 421, T4 = 501 onto T'0 = 0, T'1 = 0.3, 

T'2 = 0.58, T'3 = 0.84,  T4 = 1. Then, a subsequent execution of regression for Q = 1,2,3 provides (through 

the computer program TRIO) the following table of determination indices:
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With respect to the measures of the determination indices, it can be seen that the equations of the 

optimal regression curve for x1,x2,x3 are according to the quadratic regression (Q = 2):

E.g., for t'32 = t32/501 = 361.30/501 = 0.7212 we get (18.3503, 899.2077, 3.1824) on the optimal regression 

curve that lies “near” the point (19,900,3) = t32, see (13). Or for t'43 = t43/501 = 451.67/501 = 0.9015 we 

obtain the point (13.1031, 809.7434, 4.8852) that lies “near” the point (13,810,5) = t43, see (13).

We might also be interested in the question how to determine for t = 4.5, which lies between t21 = 4 

and t22 = 5, see (14), the value t' lying between t'21/501 = 200.17/501 = 0.3995 and t'22/501 = 230.78/501 = 

0.4606. Through the function:

that maps the interval  4, 5  for the variable t onto  t21, t22  for t we obtain for t = 4.5 the value:

The transformation of the interval  T0 = 0,T4 = 1  onto  0, 1  is then done through the function:

which yields then after the substitution t = 215.4750 that:

Inserting this value into (15), we obtain  on the optimal regression curve that is, in comparison with 

the data in Table 1, quite acceptable.

Table 3  Determination indices describing variability of observed values

Source: M. Kaňka

Regression I2

    

x1
I2

    

x2

 

I2

    

x3

 

Q=1 0.8017 0.9584 0.9009

Q=2 0.9193 0.9953 0.9308

Q=3 0.9004 0.99 0.9307

(15)
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CONCLUSION

Author was paying close attention to so called polygonal method of assigning values of parametric 

variable to experimentally obtained points, which displays those points with an oriented graph, and 

as a parameter of considered point it selects the length of polygonal trail measured from the initial point 

to the considered point. The main result of this procedure involves automatic computation of nodal 

points, which are associated with given task.

In order to improve numerical stability of equations of regressive curve, which is associated with 

the solution of specific task, it is recommended in literature to transform parametric interval to an inter- 

val of length one.

At the end of the paper the author introduces term optimal regression, which takes into account 

values of indexes of determination of observed units in specific model (Q = 1,2,3).

Individual stages of solution concerning the task of segmented regression are demonstrated in 

an example from meteorology. Introduced computations are product of computer program TRIO, without 

which the computations (starting with the elements of matrix of system of normal equations) would be 

hardly feasible.
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