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Abstract

In demography, mortality modeling with respect to age and time dimensions is often associated with  
the traditionally used Lee-Carter model. The Lee-Carter model considers a constant set of parameters of age-
specific mortality change for forecasts, which can lead to the problem of overcoming the biodemographic 
limit. The main motivation of this paper is the use of more flexible models for mortality modeling. The paper 
explores the use of state space models for modeling and predicting mortality in a form not typically used  
in demography. In this context, it is a generalized Poisson state space model with overdispersion parameters. 
Concerning the empirical results, a comparison is made between the predictive abilities of the Lee-Carter and 
the generalized Poisson state space model with overdispersion parameters. The state space Poisson model 
with overdispersion parameters led to better results with respect to the comparison of modeled and historical 
observations. However, when comparing the predictions in the cross-validation area, both models were 
represented with similar overall mean squared error.
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INTRODUCTION
The popularity of state space models started to rise in the late 1990s, particularly in the field of systems 
theory, with their utilization in the Apollo space program as a major highlight (Hutchinson, 1984). 
Subsequently, these models began to be used in other areas besides economic theory. State space models 
are based on the assumption that a time series is an output of a dynamic system that is affected by random 
components. State space models represent a general framework that covers a significant range of statistical 
models. Among the most well-known applications, one can include modeling of seasonality with a variable 

1	� Faulty of Informatics and Statistics, Prague University of Economics and Business, W. Churchill Sq. 4, 130 67 Prague 3, 
Czech Republic. E-mail: matejka.vse@gmail.com.

2	�	 Faulty of Informatics and Statistics, Prague University of Economics and Business, W. Churchill Sq. 4, 130 67 Prague 3, 
Czech Republic. E-mail: malai@vse.cz.



ANALYSES

122

character or yield curves fitting and predicting. Yield curves are traditionally modeled with respect  
to the time to maturity, but state space models also allow extending this common approach to a time 
dimension, making it possible to predict yield curves over time into the future. Another important 
application is dynamic (generalized) linear models, thus generalized linear models with time-dependent 
parameters of the explanatory variables. State space models allow the modeling of both univariate 
and multivariate stationary or non-stationary time series that may contain structural changes, other 
irregularities, or missing observations. Finally, very popular ARIMA models (Box et al., 2008) can  
be also represented by state space models.

Mortality modeling plays a crucial role in solving macro and microeconomic optimization problems. From 
a macroeconomic perspective, it is possible to mention a need to find reliable estimates of future mortality 
characteristics, which significantly determine the amount of old-age pensions paid with respect to the prediction 
of the future demographic population structure. From a microeconomic point of view, mortality modeling  
is mainly dealt with by insurance companies when designing life insurance products for their portfolio.

Nowadays, one can find a large number of models that aim to find the most accurate predictions of 
future mortality. In this paper, the focus is held on models that describe mortality both in terms of the 
age structure of the population as well as in terms of the time dimension. One of the most commonly 
used models is the Lee-Carter model, which is characterized by a good model fit to historical data, 
unambiguous interpretation of its parameters from a demographic perspective (average age-specific 
mortality level, age-specific change in mortality interacting with a general mortality trend), and simple 
computational complexity when obtaining the model parameters estimates. The disadvantages of the Lee-
Carter model can be found mainly in situations of very long mortality forecasts, for example for the next 
50 years, where future age-specific mortality rates fall at a pace estimated from historical observations, 
often below the values of the biodemographic limit. According to Carnes et al. (2003), the biodemographic 
limit in this context is understood as a natural mortality limit, often characterized by a life expectancy 
that should be biologically impossible to overcome. This problem was noticed by Li, Lee, and Gerland 
(2013), who proposed an extension of the Lee-Carter model by rotating the age-specific set of parameters  
of the original Lee-Carter model.

State space models are standardly used to extend the Lee-Carter model to model general mortality 
trends, see Andreozzi et al. (2011) or Harvey (1990), or to incorporate the Lee-Carter model in a state 
space representation, see Husin et al. (2015) and Pedroza (2006). However, the application of state space 
models to model the overall structure of population mortality with respect to age and time dimensions 
has not been significantly explored so far. The main idea and the motivation of this paper resulted from 
the specification of the traditional Lee-Carter model, see Lee and Carter (1992). This model provides 
very accurate estimates of historical, already observed, mortality, however, the age-specific component 
of the model is considered constant over time, and, therefore, the model is not always able to capture the 
changing trend in age-specific mortality. For this reason, this paper aims to assess the suitability of using 
state space models for demographic mortality analyses compared to traditional methods of predicting 
mortality rates using appropriate diagnostic criteria.

1 RELATED LITERATURE
The theoretical foundations of the state space models in the traditional classical sense were originally 
addressed by Harvey (1990) and especially Kalman (1960). Kalman was the first who analyzed time 
series using state space model methodology. In terms of the literature, one can mention in particular the 
foundational publication by Durbin and Koopman (2012). Hyndman et al. (2008) explored the use of state 
space models for exponential smoothing and modeling of seasonality with a changing pattern. Petris et al. 
(2009) explored the Bayesian approach to estimate the parameters of state space models. The prediction 
of state space models from the Bayesian perspective was also addressed by Harrison and Stevens (1976). 
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A basic description of state space models as well as an overview of the specific applications can be found 
in Slavík (2005). The use of state space models in demography was addressed also by Matějka (2017).

There is currently no universal notation of state space models. However, there are two major commonly 
used notations across statistical and econometric applications. The first, also used in this paper, originally 
based on the approach to state space models as defined by Harvey (1990), was later used as the most 
commonly used notation in econometrics by Durbin and Koopman (2012). The second notation is based 
on the original study of state space models by Harrison and Stevens (1976) and, due to additional use  
by West and Harrison (2006), is often used primarily in systems analysis and control processes. However, 
this notation can be encountered in the literature primarily concerning Bayesian approaches to state 
space models.

The Lee-Carter model, introduced by Lee and Carter in 1992, has become one of the most widely 
used models in demographic analyses of mortality prediction, affecting both age and time dimensions. 
Its widespread use implied the need to refine the original model to consider specific case studies. In this 
context, the extension of the original Lee-Carter model with an additional set of parameters covering 
not explained age-specific mortality of the original Lee-Carter model (log-linear model, see D'Amato 
et al. 2011), or the incorporation of cohort dependence of mortality (Age-Period-Cohort, Lee-Carter, 
see Renshaw and Haberman, 2006) can be mentioned. Another extension of the Lee-Carter model 
was done by Li, Lee, and Gerland (2013) who introduced time-rotating parameters for age-specific 
mortality changes.

In demography, state space models are mainly used in the context of population predictions, see 
Tavecchia et al. (2009). The statistical representation of mortality patterns using a state space model with 
a Markov process to define state variables was investigated by Fung et al. (2017). Several studies have 
examined the benefits of combining the state space model approach and the Lee-Carter representation. 
For example, an extension of the Lee-Carter model in terms of simultaneous estimation and prediction 
of a time-dependent set of parameters was considered by Reichmuth and Sarferaz (2008), who focused 
on predicting mortality in the US until 2050. Zakiyatussariroh et al. (2014) focused on comparing the 
estimates of the Lee-Carter model and the corresponding representation using state space models to model 
mortality in Malaysia. Husin et al. (2015) subsequently extended this study by comparing the predictions 
of the two mentioned models concerning short-term and long-term predictions (compared with the 
original Lee-Carter model). Several studies have also focused on linking the Lee-Carter model and a state 
space model, where the evolution of specific mortality rates is defined by an observation equation, see 
Lazar and Denuit (2009) and Pedroza (2006), who additionally used the Bayesian approach to improve 
prediction characteristics of the general mortality trend. The states equation in this case defines the evolution  
of the general mortality trend. Fung et al. (2015) considered extending the Lee-Carter model using  
a Bayesian state space model approach to improve annuity price estimates. State space models are not 
very frequently used in demography, however, one can mention a study of Abd Nasir et al. (2021) who 
investigated the prediction of the evolution of under-5 child mortality using a state space local linear trend 
model. The same model was used by Khedhiri (2021) to predict the evolution of Covid-19 infectivity in 
the Arab States. Andersson and Lindholm (2021) extended the use of the random walk approach with 
the Lexis diagram to model and predict mortality using state space models.

The estimation of state space model parameters is a very computationally demanding task from  
a practical point of view, therefore it is possible to find several libraries implemented in the statistical 
programming environment R (Team R, 2021) that address this issue, see Petris and Petrone (2011)  
or Tussel (2011). These are, for example, KFAS (Helske, 2017), dlm (Petris, 2010), dse (Gilbert, 2009), 
sspir (Dethlefsen et al., 2009). The statistical computing interface EViews (Van Den Bossche, 2011)  
or the SsfPack libraries in the Oxmetrics computing environment (Mendelssohn, 2011) can also be used 
to solve state space models.
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2 DATASET AND STATISTICAL METHOD
The empirical study in this paper was carried out using the publicly available data from HMD (Human 
Mortality Database),3 where the number of deaths (referring to the third main sets of Lexis diagram) and 
the exposure of risks of the population for males in the Czech Republic are available. The considered models 
are constructed for the historical years in the training area from 1950 to 2012, while validation data for the 
period 2013 to 2019 are used to verify the ability of each model to predict accurately future mortality rates.  
In terms of the age dimension, five-year age categories from 0, 1–4 to 95+ years (21 categories) are considered. 
Thus, the training dataset has a dimension of (21 × 63) and the validation dataset has a dimension of (21 × 7). 

The data is applied to the Lee-Carter model and the multivariate Poisson state space model, which will 
be outlined in the following chapters by moving from the Gaussian state space model to the generalized 
state space model.

2.1 Gaussian state space model
Linear Gaussian state space models consist of two sets of equations, these are the observation equation and 
the state equation. The notation of state space models, including state matrices and vectors, is consistent 
with the definition of state space models used by Durbin and Koopman (2012) and Helske (2017).  
The first set of p equations explains the behavior of the observed data using observable or unobservable 
(latent or state) variables and thus can be written as:

yt = Ztαt + εt ,� (1)

where t = 1, 2, ..., n is the time index, yt is a vector of a multivariate observation time series (observation 
vector) of a dimension (p × 1), εt ~ Np(0, Ht) is a p-dimensional vector of random terms. The vector  
of observed or unobserved latent variables (state vector) αt of a dimension (m × 1) explains yt by a state 
matrix Zt of a dimension (p × m).

The second set of m equations describes the evolution of latent variables over time, again influenced 
by random terms:

αt+1 = Ttαt + Rtηt ,� (2)

where ηt ~ Nk(0, Qt) is a k-dimensional vector of random terms affecting the latent variables αt+1. System 
matrices Tt of a dimension (m × m) and Rt of a dimension (m × r) define the relationships within the state 
and observation equations. Covariance matrices Ht and Qt determine the covariance structure of the random 
terms for each equation, see Durbin and Koopman (2012). The covariance matrices Ht and Qt can be in some 
cases presumed time-invariant, and thus one can preferably consider only a matrix H of a dimension (p × p) 
and a matrix Q of a dimension (r × r). The random terms εt and ηt are assumed to be uncorrelated with each 
other for the entire time axis t. They are further assumed to be uncorrelated with the initial state vector α1.

2.2 Kalman filter and smoother
The main procedures used to estimate the parameters of classical state space models are the Kalman 
filter and the Kalman smoother, see Durbin and Koopman (2012) and Tusell (2011). The Kalman filter 
refers to a recursive procedure leading to filtered estimates of unknown state variables αt for observations  
of (multivariate) time series yt, for t = 1, 2, ..., n. Kalman filter is a procedure that uses filtering as a process 
where one-step ahead estimates of state variables are made more precise as new time series observations 
yt are taken into consideration.

3	� <www.mortality.org>.
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Kalman smoother is a backward recursive algorithm for t = n, n – 1, ..., 1 that uses the estimated state 
variables of the Kalman filter to obtain smoothed estimates of the state variables based on all observations, 
see Koopman and Durbin (2001).

As already mentioned, the Kalman filter and the smoother are recursive procedures. In general,  
a distinction can be made between recursive and non-recursive approaches. In the case of non-recursive 
filters, the basic idea is to gradually incorporate information from the observed (multivariate) time 
series to obtain filtered estimates. However, none of the sequentially obtained filtered estimates are taken 
into account in the calculation of subsequent estimates. In contrast to this approach, recursive filtering 
methods aim at obtaining filtered estimates of the model parameters at time n, whereby the estimate  
is constructed based on the already obtained filtered estimates corresponding to time n – 1. Both 
approaches can be iterative, where the filtered estimate at time n is used multiple times (with respect to 
the same observations) in order to obtain more accurate filtered estimates.

Koopman and Durbin (2001) outline a detailed derivation of the extended Kalman filter and exponential 
smoothing.

2.3 Multivariate State Space Poisson model with overdispersion parameters
Gaussian state space models can be extended to consider probability distributions of an exponential 
family of distributions, thus relaxing the assumption of a normal distribution or the linear dependence 
in Formulas (1) and (2). The observation equation is then expressed in terms of the probability density 
of the random variables of the observed time series:

p(yt|θt) = p(yt|Zt αt) ,� (3)

and the state vector is defined as:

αt+1 = Tt αt + Rt ηt ,� (4)

where p(yt|θt) is the probability density of the random variables of the observed time series and θt = Zt αt  
is referred to as the signal. Thus, the signal is a linear predictor that explains the expected value  
E(yt) = Zt αt of the random variable yt using a link function g(ut) = θt. The probability density p(yt|θt) 
may follow a non-normal distribution or be non-linear, respectively both situations may occur. If the 
density p(yt|θt) follows the assumption of a normal distribution and the signal θt is a linear function of yt, 
then the model represented by Formulas (3) and (4) transfers to the Gaussian state space model defined  
by Formulas (1) and (2).

For the use of Formulas (3) and (4), it is possible to use the standard procedures that are well 
known in the field of generalized linear models. For the purpose of this paper, we mention the Poisson 
distribution with the expected value λt, exposure ut and the logarithmic link function θt = log(λt), thus  
E(yt|θt) = D(yt|θt) = ut eθt.

The core model of the presented paper is a multivariate Poisson linear state space model with 
overdispersion character (hereafter referred to as the PSSO model). Its theoretical background is the 
exponential state space model defined by the Formulas (3) and (4), and therefore the PSSO model  
is defined as follows:

p(yt|θt) = Po20(ut eθt),
θt = ut + εt, εt ~ N20(0, Qε),� (5)
μt+1 = μt + vt + ξt, ξt ~ N20(0, Qξ),
vt+1 = vt ,
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where μt is a random walk process, vt is a constant slope, and ξt is the component capturing the additional 
variance in the time series (overdispersion). No constraints are being considered with respect to the 
covariance matrices Qε and Qξ, thus general matrices are assumed. Dimension of vectors yt, θt, μt, vt, εt  
a ηt is (21 × 1). Dimension of matrices Qε and Qξ is (21 × 21) for t = 1, 2, ..., 63.

The construction of the model (5) was performed using the KFAS library (Helske, 2017) in the statistical 
software R (Team R, 2021), using standard functions for the state space model specification.

2.4 Extended Kalman filter and exponential smoothing
In the case of generalized state space models, it is necessary to use the extended Kalman filter that first 
linearizes the generalized state space model using the Laplace approximation and then applies the standard 
Kalman filter and smoother. The estimation of the unknown parameters of the model (state variables, 
covariance matrices, or only their parts) is performed in the traditional way using the maximum likelihood 
method with respect to the considered probability distribution of the exponential family. Numerical 
optimization is then performed by the BFGS method, where this abbreviation is derived from the initial 
letters of the names of the independently published authors Broyden (1970), Fletcher (1970), Goldfarb 
(1970), and Shanno (1970), or possibly by the Nelder-Mead method, according to Nelder and Mead (1965).

A detailed derivation of the extended Kalman filter and exponential smoothing can be found  
in Koopman and Durbin (2001).

2.5 Standard Lee-Carter model
A very useful, long-standing, and still popular approach for modeling and predicting mortality rates is the 
Lee-Carter log-bilinear model (hereafter referred to as the LC model). The method proposed by Lee and 
Carter (1992) has become a fundamental statistical method used in demographic analyses. The LC model 
aims to model and predict age- and time-specific mortality rates mx,t, which are defined by the model as:

log(mx,t) = αx + βxκt + εx,t ,� (6)

where t represents a time, x is an age (respectively an age category) for t = 1, 2, ..., n and x = 1, 2, ..., r.  
A matrix mx,t = Dx,t / Ex,t of a dimension (r × n) represents age- and time-specific mortality rates. According 
to Šimpach and Arltová (2016), it is presumed that random terms εx,t follow a normal distribution with 
zero mean, constant variance, and meet the assumptions of the white noise process. The number of 
deaths at age x at time t is denoted as Dx,t and the mean population at age x and time t is denoted as Ex,t.

The first set of parameters of the model (6) contains r parameters αx and it defines an age-specific 
general mortality profile, hence it is a vector of a dimension (r × 1). The second set again contains  
r parameters βx and represents the deviations of the mortality rate from αx as a result of an interaction 
with the general mortality trend, which is determined by the third set of parameters κt. Thus, the third 
set contains t parameters, respectively it is a vector of a dimension (1 × t).

The estimation of the unknown parameter sets of the Lee-Carter model by the maximum likelihood 
method is based on the assumption that the number of deaths Dx,t at age x and at time t is a random 
variable that follows a Poisson distribution, see Brillinger (1986) or Wilmoth (1993). The expected value  
of the random variable Dx,t as well as the constrains applied due to model (6) parameters unambiguity can 
be found in the respective literature, see Lee and Carter (1992), Wilmoth (1993), Girosi and King (2007)  
or Richards and Currie (2009). Other estimation methods, such as singular value decomposition or weighted 
least squares, can be also alternatively used, see Andreozzi et al. (2011) or Koissi and Shapiro (2008).

2	� <www.mortality.org>.
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3 EMPIRICAL FINDINGS
The main purpose of mortality models is their ability to accurately predict future population mortality. This 
ability may be affected by the presence of a systematic nature of mortality, which can be revealed during  
a residual diagnosis, but also when comparing modeled and historical observations.

Figure 1 shows the Root-Mean-Square error (RMSE) of the Lee-Carter (LC) and Poisson state space 
model with overdispersion parameters (PSSO) fitted values compared to the historical data. From the 
values shown, it is apparent that the PSSO model achieves a more accurate fit of the model mortality rates 
to historical observations when compared to the LC model for all age categories.

The age pattern of RMSE on a logarithmic scale is illustrated in Figure 1. The first age category of 0 years 
old is characterized by a higher RMSE value for both models. These deviations subsequently decrease until 
the age category 10–14 years. For the LC model (darker line), a saddle of RMSE values can be observed 
which ends with the age category 35–39 years. RMSE values subsequently increase with increasing age 
categories. According to the age pattern of the RMSE of the PSSO model (lighter line), it can be seen that 
this model provides lower RMSE values for all age categories and is, therefore, able to provide more accurate 
modeled values for specific mortality rates when compared to the LC model. The total RMSE of the LC model  
is 0.10147, respectively 0.06466 in the case of the PSSO model.

As already mentioned, the main motivation for constructing mortality models is to obtain the most 
accurate mortality predictions. For this purpose, the PSSO and LC models were estimated over the  
1950–2012 historical training period and the validation period 2013–2019 was used to compare  
the predictions of these models with known observations.

Figure 2 shows the age pattern of the RMSE values of the PSSO (lighter line) and the LC model (darker 
line) on a logarithmic scale for the validation area.

The total RMSE of the LC model is 0.055. In the case of the PSSO model, the average RMSE  
is 0.057. Figure 2 shows that the evolution of RMSE can be divided into three areas for each age category.
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	 data 1950–2012

Source: Own construction
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For the first area, age categories 0 to 55–59, the PSSO model provides a lower RMSE (except for age 
category 35–39). In the second area from age categories 60–64 to 90–94, the RMSEs are lower for the LC 
model (except for age categories 65–59 and 70–74). For the last area, the highest ages of 95+ years, the 
RMSE values are similar but lower for the PSSO model, such conclusion is valid also for the age category 
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Figure 3	 Age pattern of RMSE in logarithmic scale of PSSO and LC models confidence prediction intervals  
	 for validation area 2013–2019

Source: Own construction

Source: Own construction
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90–94 with the opposite effect. It can be concluded, that both models are characteristic with a similar 
total RMSE, however, the PSSO model provides a better fit of predicted values to known observations  
in two-thirds cases (14 out of 21 time series). Specifically, these time series are 0, 1–4, 5–9, 10–14, 15–19, 
20–24, 25–29, 30–34, 40–44, 45–49, 50–54, 55–59, 70–74, and 95+ years, see Figure 2.

Figure 3 shows the age pattern of the RMSE values of the PSSO (lighter line) and the LC model (darker 
line) on a logarithmic scale for the validation area when comparing the respective confidence intervals 
of the predictions and the observed mortality rates in the validation period.

The total RMSE of the LC model confidence prediction intervals to the validated mortality rates  
is 0.206. In the case of the PSSO model, the average RMSE is 0.387. Despite the fact that the total RMSE 
is lower for LC model, the age pattern of RMSE in Figure 2 shows that the RMSE of mortality rates  
and confidence prediction intervals of both models is smaller for PSSO model for all age categories expect 
for the older ages (85–89, 90–94 and 95+) where the accuracy of both models is limited due to less data 
availability from a demographic perspective.

CONCLUSION
The aim of the paper was to find a more flexible model that would take into account age-specific changes 
in mortality over time. The Lee-Carter model was chosen as a benchmark to such a model. The Lee-Carter 
model considers the invariant nature of age-specific mortality change due to the second set of parameters, 
which interact with the general mortality trend to determine the future predictions of mortality.

In the empirical part of this paper, the generalized state space and Lee-Carter models are applied  
to Czech mortality data from 1950 to 2012 (training part of the data). Information for the period from 
2013 to 2019 (validation part of the data) is then used to assess the predictive ability of both models.  
The generalized state space model, as specified in this paper, is not standardly used in the field  
of demographic analysis, and thus the introduction of this model alone reveals a wide range of potential 
applications of state space models for mortality or other demographic characteristics modeling.

Summing up the results, it can be concluded that this study has shown that both PSSO and LC models 
show a similar RMSE pattern with respect to the model fit to data. Although the age pattern of RMSE 
is similar, the PSSO model provides lower RMSE and, therefore, more accurate model values of specific 
mortality rates for all age categories in the training data area.

When comparing the deviations of the predicted values from the known observations, it can  
be concluded that the total RMSE deviation is similar for both PSSO and LC models. In terms of the 
age patterns of RMSE for each age category, three areas can be observed, corresponding to lower RMSE 
values for the PSSO model, lower RMSE values for the LC model, and, finally, the last area of similar 
RMSE values for both models. When assessing the RMSE values for all age categories, it can be observed 
that the PSSO model shows a better fit between predictions and observations in the training area in two-
thirds of the cases when compared to the LC model.

Both models were also compared from their prediction intervals accuracy perspective. The respective 
age specific RMSE revealed that the usage of PSSO model resulted in lower RMSE for all age categories 
except the oldest three categories (85–89, 90–94 and 95+) which can be summarized as lower RMSE  
in 85 % of cases for the PSSO model.

The computational complexity of estimating the PSSO model is significantly higher when compared 
to the time required to obtain the LC model estimates. The computational complexity was reduced by 
estimating the model first without simulations. These parameter estimates were used as initial values  
for the Importance sampling method with the BFGS optimization procedure, which provided model 
estimates in less time when compared to the Nelder-Mead method. The resulting estimates obtained from 
these two methods hardly differed. However, the computation of the estimation of the state variables  
of the PSSO model using the above approach takes still several hours, whereas the estimation  
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of the parameters of the LC model takes only a few seconds. Contrary to LC model parameters where 
their interpretation is meaningful from a demographic perspective, the interpretation of PSSO state 
parameters is rather cryptic and hence difficult to interpret. 

The use of the PSSO model, in this specific use case, resulted in similar overall RMSE values  
in comparison to LC model. Despite the fact that age patterns of RMSE were more precise for two-thirds 
of age categories (respectively in 85% cases when focused on confidence intervals), it cannot be concluded 
that PSSO model would be recommended for mortality predictions. It worth to be mentioned that  
the conclusion above was done by using both models on Czech male mortality data, hence further 
evaluation of more data sets is recommended in order to obtain more conclusive results. 
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