
METHODOLOGY

88

Iteratively Reweighted Least 
Squares Algorithm for Sparse 
Principal Component Analysis 
with Application to Voting 
Records
Tomáš Masák 1  | Charles University, Prague, Czech Republic

1	 Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Prague 8, Czech Republic. E-mail: tom.masak@gmail.com.

Abstract

Principal component analysis (PCA) is a popular dimensionality reduction and data visualization method. 
Sparse PCA (SPCA) is its extensively studied and NP-hard-to-solve modifcation. In the past decade, many 
diferent algorithms were proposed to perform SPCA. We build upon the work of Zou et al. (2006) who recast 
the SPCA problem into the regression framework and proposed to induce sparsity with the l1 penalty. Instead, 
we propose to drop the l1 penalty and promote sparsity by re-weighting the l2-norm. Our algorithm thus consists 
mainly of solving weighted ridge regression problems. We show that the algorithm basically attempts to fnd 
a solution to a penalized least squares problem with a non-convex penalty that resembles the l0-norm more 
closely. We also apply the algorithm to analyze the voting records of the Chamber of Deputies of the Parliament 
of the Czech Republic. We show not only why the SPCA is more appropriate to analyze this type of data, but 
we also discuss whether the variable selection property can be utilized as an additional piece of information, 
for example to create voting calculators automatically.
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Introduction
Principal component analysis (PCA) is a popular dimensionality reduction technique, which has been 
successfully applied in virtually all areas of science where multivariate data are encountered. PCA is 
commonly used in statistics, machine learning, signal processing, genetics, fnance, or meteorology, just 
to name a few. PCA projects data onto a lower dimensional subspace spanned by the leading eigenvectors 
of the sample covariance matrix. Sparsity, i.e. restriction on the l0-norm of the eigenvectors, is often 
assumed to cope with the issues of poor interpretability and inconsistency of classical PCA in the case 
of high-dimensional data. Due to the immense growth of data in many disciplines, sparse PCA remains 
to be area of active research for more than  adecade now. 
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The contribution of our paper is threefold: proposition of a non-convex penalty to be employed
in the regression-based PCA setup of Zou et al. (2006), derivation of an iterative algorithm for the
resulting non-convex problem together with the proof of its convergence, and application of the new
algorithm on a detailed analysis of real-world data. Thus, the paper has three fundamental parts, as
outlined in the forthcoming paragraphs.

After a review of (PCA) and the notion of sparsity (Section 1.2), we analyze penalized least
squares problem with a non-convex penalty in Section 1.3. We relax the problem introducing ad-
ditional variables and propose an alternating minimization algorithm to optimize it. The algorithm
solves a simple convex optimization problem in every step while the overall algorithm attempts to
solve a non-convex problem. We show numerical convergence of the algorithm to a stationary point
of the original objective function. Proofs themselves are postponed to the Appendix.

Second, in Section 1.4, we review the S-PCA algorithm of Zou et al. (2006), which possesses
several properties that make it attractive in practice, and introduce two of its modifications. First,
we describe a very simple modification based on idea of the adaptive lasso (Zou, 2006). This simple
modification significantly improves the numerical performance of the S-PCA algorithm, but it also
lacks some of the favorable properties of S-PCA. Second, we propose a modification of S-PCA
adopting the non-convex penalty function analyzed in Section 1.3. This leads to a new algorithm
for sparse PCA. Even though the algorithm is heuristic to some extent, it preserves the favorable
properties of the S-PCA algorithm while showing a superior performance.

Finally, we display the differences in performance of the considered algorithms on both real and
simulated data in Section 2. We carefully analyze the real data: the voting records of the Chamber
of Deputies of the Parliament of the Czech Republic. We examine thoroughly why SPCA is more
appropriate than PCA for these data, and what is the value added by the sparsity assumption. The
newly proposed algorithm is shown to provide the most easily interpretable results.

The paper is concluded with final remarks in the Discussion.

1 Methods
1.1 Notation
For a matrix A ∈ Rn×p we denote a(i) its i-th row, aj its j-th column, and aij its element on the
position (i, j). A vector v ∈ Rp consists of entries v1, . . . , vp. We also write v = [vi]

p
i=1. All vectors

are column-wise, and Ik stands for the k × k identity matrix.
For a function f(x,y) of two vector variables x ∈ Rp, y ∈ Rq, we denote ∇x f(x,y) the

vector of partial derivatives [ ∂
∂xi

f(x,y)]pi=1. We abuse the notation slightly when by ∇x f(x0,y0)

we denote the part of the gradient evaluated in (x0,y0) ∈ Rp×q.
Finally, note that we abbreviate “sparse principal component analysis” as SPCA while S-PCA

refers to a specific algorithm.

1.2 Principal component analysis and sparsity
Suppose we work with a (column-wise) centered data matrix X ∈ Rn×p with the p-dimen-sional
observations x(1), . . . ,x(n) in its rows. The objective of PCA is to find linear combinations of the
original variables (columns of X) that are uncorrelated and subsequently explain as much variance
in the data as possible. Keeping only the first few combinations corresponds to the projection of
the original data onto a lower dimensional subspace (called principal subspace) best approximating
the data in the sum-of-squares sense. One of many equivalent formulations how to find the K-
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1.2 Principal component analysis and sparsity

dimensional principal subspace is

argmin
X�∈Rn×p

‖X−X�‖2F s.t. rank(X�) = K, (1)

where ‖ · ‖F is the Frobenius norm, i.e for A ∈ Rn×p it is ‖A‖F =
(∑n

i=1

∑p
j=1 a

2
ij

) 1
2 .

Although this problem is non-convex due to the rank constraint, it can be solved explicitly via

the singular value decomposition (SVD) of the data matrix X, i.e. X = UDV� =
m∑
i=1

diuiv
�
i ,

where m = min(n, p), U ∈ Rn×m and V ∈ Rp×m are orthonormal matrices, and D ∈ Rm×m is a
diagonal matrix with non-increasing entries d1 ≥ . . . dm ≥ 0 on the diagonal. It follows from the
Eckart-Young theorem (Eckart and Young, 1936) that a solution to (1) is obtained by truncating the

SVD of X, i.e. X̂� =
K∑
i=1

diuiv
�
i .

Recall that v1, . . . ,vK are called loadings, and they form an orthonormal basis of the principal
subspace. They also correspond to the directions capturing subsequently the majority of variance
in the data, or equivalently, they are eigenvectors of the sample covariance matrix Σ̂ = 1

n
X�X.

Thus v1, . . . ,vK are estimators of the population loadings – the eigenvectors of the population
covariance matrix Σ. Vectors u1, . . . ,uK are projections of the data onto the directions of loadings
and are usually called principal components (PCs).

Suppose we are interested in the first K principal components. Problem (1) can be rewritten in
terms of finding an orthonormal basis V of the principal subspace as

argmin
V�∈Rp×K

n∑
i=1

‖x(i) −V�V
�
� x

(i)‖22 s.t. V�
� V� = IK . (2)

This equivalence follows by rewriting
∑n

i=1 ‖x(i) − V�V
�
� x

(i)‖22 = ‖X − XV�V
�
� ‖2F and con-

sidering the SVD of X. Understanding PCA from the perspective of finding a basis of the lower-
dimensional subspace best fitting the data points x(1), . . . ,x(n) ∈ Rp will become handy in the
upcoming sections.

PCA is also connected to factor analysis, even though the objectives of PCA and factor analysis
often differ (see Jolliffe, 2002, Section 7.3, for a discussion). Suppose that data x(1), . . . ,x(n) are
generated from the following factor model:

x = Wf + ε, (3)

where W ∈ Rp×K is a fixed unknown matrix, f ∈ RK is a random vector (of so-called factors),
and ε ∈ Rp is a random error term, such that Ef = 0 = Eε, ε and f are independent, Var(f) = IK ,
and Var(ε) = σ2Ip for some σ2 > 0. Under this model, it holds Σ = Var(x) = WW� + σ2Ip.
Hence, population loadings form an orthonormal basis of the column space of W. Thus PCA can
be regarded as an attempt to estimate an orthonormal basis of the subspace spanned by W, i.e.
the subspace to which the factors are projected. In other words, PCA can be loosely thought of as
describing some hidden factors in the domain of the observed variables.

PCA works well and the theory behind it is well understood in the traditional setting with a fixed,
low number of variables p and a higher number of observations n. Nonetheless, PCA encounters
both theoretical and practical difficulties when p is comparable to or larger than the sample size n.
At various levels of generality, a set of papers showed that eigenvectors of the sample covariance
matrix are not consistent estimators of their population counterparts in the joint limit case p, n → ∞,
p/n → τ ≥ 0 (e.g. Paul, 2007, Nadler, 2008, and references therein). Essentially, in the high-
dimensional case when p > n, it is hopeless for loadings to be credible estimates of their population

3
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counterparts. Moreover, the interpretability of PCA is problematic even for a moderate p because
all the coefficients of the loadings are nonzero.

To regain the lost consistency of PCA in the high-dimensional setup, an additional structure
needs to be assumed. The most widely adopted structure assumption is sparsity of the loadings
v1, . . . ,vK . A vector v is s-sparse if ‖v‖0 ≤ s, where ‖v‖0 = {#i; vi �= 0} is the cardinality
of v, i.e. the number of nonzero coefficients of v or the so-called �0-norm.1 Under the sparsity
assumption, vi is presumed to be si-sparse for some si < p. If the values si are sufficiently small,
it is possible to estimate the loadings consistently even in the high-dimensional case. Sparsity also
greatly improves the interpretability of PCA.

However, while standard PCA is an easy task equivalent to SVD of the data matrix, sparse
PCA (SPCA) constraining the numbers of nonzero loadings coefficients is known to be an NP-
hard problem. SPCA has been a topic of an active research for more then a decade, and many
different algorithms for SPCA have been developed. We build upon the procedure proposed by Zou
et al. (2006), which enjoys several favorable properties, especially from the practical point of view.
Before introducing this algorithm, we discuss a non-convex penalized least squares problem to be
utilized later.

1.3 Non-convex sum-of-squares penalization
The following penalized least squares problem is extensively studied in the literature:

argmin
β∈Rp

‖Y −Xβ‖22 + λρ(β), (4)

where λ > 0 is a tuning parameter, Y ∈ Rn, X ∈ Rn×p, and ρ : Rp → R is a penalty function. The
most prevalent choices of the penalty function are ρ(·) ≡ ‖ · ‖2, which leads to the ridge regression
(Hoerl and Kennard, 1970), or ρ(·) ≡ ‖ · ‖1, which leads to the lasso (Tibshirani, 1996). Optimally,
we would like to solve the problem with ρ(·) ≡ ‖ · ‖0 but this leads to an NP-hard problem. The
lasso is often used as a convex relaxation to the �0-norm.

In this paper, we work with the following penalty:

ρl(β|δ) =
p∑

j=1

log(β2
j + δ), (5)

where δ > 0 is a regularizing parameter, because it resembles more closely the �0-norm as shown
in Figure 1 and discussed in Example 1. However, the problem

argmin
β∈Rp

f(β|δ) ≡ argmin
β∈Rp

‖Y −Xβ‖22 + λ
p∑

j=1

log(β2
j + δ). (6)

is still non-convex and thus hard to solve. Therefore, we introduce auxiliary variables and propose
an alternating minimization algorithm enabling to solve the relaxed problem.

We define a surrogate function

g(β,w|δ) = ‖Y −Xβ‖22 + λ

p∑

j=1

wjβ
2
j + λ

p∑

j=1

[
wjδ − log(wj)− 1

]
, (7)

1 We note here that ‖ · ‖0 is actually not a norm, but the term is traditional due to Donoho (2006).
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where wj > 0 for j = 1, . . . , p, and propose to solve (6) by minimizing g over one of the variables
β and w, keeping the other variable fixed. Starting from some w(0) (for example w

(0)
j = 1, j =

1, . . . , p), this leads to the following iterative scheme:

β(l+1) = argmin
β∈Rp

g(β,w(l)|δ) (8)

w(l+1) = argmin
β∈Rp

g(β(l+1),w|δ) (9)

Lemma 1. For f of (6) and its surrogate g of (7), the following properties hold:

(a) ∀δ > 0, ∀β ∈ Rp :

f(β|δ) = min
w∈Rp

g(β,w|δ).

(b) ∀l = 1, 2, . . . ∀δ > 0 : β(l+1) of (8) is the unique solution to the weighted ridge regression
problem

argmin
β∈Rp

‖Y −Xβ‖22 + λ
p∑

j=1

w
(l)
j β2

j .

(c) ∀l = 1, 2, . . . ∀δ > 0 : w(l+1) of (9) is given by

w
(l+1)
j = 1

(β
(l+1)
j )2+δ

, j = 1, . . . , p. (10)

The proof consists of simple calculations, and hence we omit it.
Example 1. Let X ∈ Rn×2, n ∈ N, Y ∈ Rn and suppose Y ≈ Xβ for an unknown β ∈ R2. Thus
we are in a situation with two regressors. Suppose we want to find an estimate of β as a minizimizer
of the sum of squares of residuals but having cardinality at most one, i.e. we wish to solve

β̂ = argmin
β∈R2

‖y −Xβ‖22 s.t. ρ(β) ≤ t, (11)

for ρ(·) ≡ ‖ · ‖0 and t = 1. Note that the permissible set {β ∈ R2, ‖β‖0 ≤ 1} corresponds to
the whole coordinate axes. Thus, in Figure 1, the estimate corresponds to the point of contact of
the coordinate axes with the ellipse (representing a sum-of-squares level set) closest to the ordinary
least squares (OLS) estimate. In Figure 1, also solutions to (11) for ρ(·) ≡ ‖·‖1 (i.e. lasso estimates)
with t = 1 and t = 1.5 are given. Note that the lasso estimate for t = 1.5 is the closest �1-penalized
approximation to the �0-penalized solution one can get. Increasing t any further results in losing
the sparsity and the lasso estimate actually grows away from the desired point closer to the OLS
estimate. On the other hand, the solution to (11) for ρ(·) ≡ ρl(·|δ) with appropriate t and δ is able
to approximate the �0 solution to arbitrary precision. In figure 1, the solution with δ = 10−2 and
t = 1

2
log(δ) is shown. Note that for a fixed t, it holds for δ1 > δ2 that

{
β ∈ Rp;

p∑

j=1

log(β2
j + δ1) ≤ t

}
⊂

{
β ∈ Rp;

p∑

j=1

log(β2
j + δ2) ≤ t

}
,

thus it is necessary to vary both t and δ to approximate the �0-norm well. This translates to the
necessity to both decrease δ and increase λ accordingly in the unconstrained formulation of the
problem (6).

5
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Figure 1  �Geometry of the l0, l1, and pl penalties in the case of two regressors. Solutions to the constrained problem 
(11) with various penalties along with the unpenalized OLS solution are shown

Figure 1: Geometry of the �0, �1, and ρl penalties in the case of two regressors. Solutions to the constrained problem
(11) with various penalties along with the unpenalized OLS solution are shown.

β

β
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Source: Own construction.

Lemma 1 (a) shows that successful minimization of g results in the minimization of f . It fol-
lows from Lemma 1 (b) that the alternating minimization scheme of (8) and (9) consists of a se-
quence of weighted ridge regression problems, thus it is in fact an instance of iteratively reweighted
least squares (IRLS) algorithm. From Lemma 1 (a) it also follows the algorithm is a majorization-
minimization (MM) algorithm (Lange et al., 2000).
Lemma 2. Let w(0)

j > 0, j = 1, . . . , p, let δ ≥ 0, and let {β(l)}∞l=1 be the sequence obtained by
solving (8) and (9) for l = 1, 2, . . .. Then ‖β(l+1)−β(l)‖2 → 0 and every limit point of the sequence
{β(l)}∞l=1 is a stationary point of f(β|δ).

The previous lemma can be proved easily by following the general theory of MM algorithms
(Lange et al., 2000). We do not show this here since the lemma also follows from more general
Proposition 3, which we prove in detail. Nonetheless, Lemma 2 implies numerical convergence of
the iterative scheme consisting of (8) and (9). It also implies that the algorithm effectively tries to
minimize f(β|δ), although convergence to the true global minimum can not be guaranteed for the
non-convex problem.

Remark 2. Weighted ridge regression can be transformed into regular ridge regression by a simple
transformation of data. Furthermore, a ridge regression problem can be efficiently solved via the
SVD of the data matrix. Thus the iterative scheme (8)-(9) operates by repeatedly executing SVD.

Performance studies of similar algorithms strongly suggest that δ should not stay fixed through-
out the iterations (Daubechies et al., 2010). We would prefer to have δ very small to approximate
�0-norm well with the penalty function ρl, but the smaller δ the more non-convex problem (6) gets.
Subsequently, the greater is the chance the algorithm gets trapped in local minima near the start-
ing point. Thus we would like to start with a relatively large δ to avoid local minima near the

6
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Algorithm 1  Interative algorithm for problem (6) with varying δ
Algorithm 1: Iterative algorithm for problem (6) with varying δ.

Input: w
(0)
j ≥ 0 (default: w(0)

j =), j = 1, . . . , p, ξ > 0,
a sequence {δl}∞l=0 such that δ0 ≥ δ1 ≥ . . . and δl → δ > 0 (default: δ0 = 1
and δl+1 = max(δl/1.5, δmin), where δmin = 10−6).

Output: Estimate β̂.

begin
Set l = 0.
repeat

β(l+1) = argmin
β∈Rp

g(β,w(l)|δl) (12)

w(l+1) = argmin
β∈Rp

g(β(l+1),w|δl+1) (13)

Set l = l + 1.
until ‖β(l) − β(l−1)‖2 < ξ

Set β̂ = β(l).
end

initialization, and decrease δ gradually during the iterations. This leads to Algorithm 1.
Lemma 1 (b) and (c) still indicate how the solutions of (1) and (1) look like. The only difference

is that δ in (10) is replaced by δl+1. On the other hand, Lemma 1 (a) is useless now. It is not a priori
clear which function Algorithm 1 effectively tries to minimize, if any, and Algorithm 1 is no longer
an MM algorithm. Despite the fact, we still have numerical convergence to a stationary point of the
limit function f(β|δ), where δ is now the limit of the sequence of {δl}∞l=1.

Proposition 3. Let w(0)
j > 0, j = 1, . . . , p, let δ0 ≥ δ1 ≥ . . . be a sequence such that δl → δ� > 0

and let {β(l)}∞l=1 be the sequence generated by Algorithm 1. Then ‖β(l+1) − β(l)‖2 → 0 and every
limit point of the sequence {β(l)}∞l=1 is a stationary point of f(β|δ�).

We defer the proof to the Appendix.

1.4 S-PCA algorithm
Zou et al. (2006) proposed a suitable reformulation of the PCA problem. They showed that for any
µ > 0 the solution (Â, B̂) of

argmin
A,B∈Rp×K

n∑
i=1

‖x(i) −AB�x(i)‖22 + µ
K∑
k=1

‖bj‖22 s.t. A�A = IK (14)

satisfies that the normalized columns of B̂ are exactly the first K loadings v1, . . . ,vK (possibly up
to a rotation). We invite the reader to compare (14) to (2).

With the goal to induce sparsity of the loadings, Zou et al. (2006) proposed to incorporate �1
penalties in (14) leading to

argmin
A,B∈Rp×K

n∑
i=1

‖x(i) −AB�x(i)‖22 + µ
K∑
k=1

‖bj‖22 +
K∑
k=1

λk‖bj‖1

s.t. A�A = IK ,
(15)
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where λ1, . . . , λK > 0. For a fixed A, (15) can be rewritten as K independent problems of the form

argmin
β∈Rp

‖Y −Xβ‖22 + µ‖β‖22 + λ‖β‖1, (16)

where µ, λ > 0, while, for a fixed B, the solution of (15) is simply given by a suitable rotation.
Zou et al. (2006) proposed an alternating algorithm for problem (15), fixing either A or B in

every step and solving for the other term. The algorithm is called S-PCA.
Unfortunately, problem (15) is still non-convex, and Zou et al. (2006) did not provide any the-

oretical guarantees for the convergence of their alternating minimization algorithm. Although nu-
merical convergence to some fixed point could be proven easily (but we do not pursue this due to
the space restrictions), the algorithm is not guaranteed to provide a global minimum (Witten et al.,
2009). On the other hand, empirical results show that ordinary loadings (obtained via SVD) provide
a reliable starting point, and the algorithm does its job.
Remark 3. Even though there are no strong theoretical guarantees for the S-PCA algorithm, the
algorithm may very well be the method of choice for many applications because it enjoys several
favorable properties lacked by its competitors. These are:

(a) an exact cardinality (i.e. the desired number of nonzero coefficients) can be chosen for each
vector of loadings separately,

(b) as the cardinality constraints are lifted, the method gradually reduces to classical PCA,
(c) a chosen number K of sparse PCs is computed at once,
(d) the computed loadings are truly orthonormal, and
(e) the method does not require neither storage nor computation of the covariance matrix (which

can be unmanageable for p > n).

However, the S-PCA algorithm is outdated in terms of performance, as will be shown in sec-
tion 2. Hence our goal is to develop a modification that would retain the above stated favorable
properties and be competitive at the same time. Since the cornerstone of the S-PCA algorithm is
repeatedly solving (16) (called elastic net problem, see Zou and Hastie, 2005), a natural way to
improve the algorithm’s performance is to use the large body of literature dealing with penalization
in the regression context. We can substitute the elastic net problem (16) for a different one. This
adds up to using different penalty terms in (15).

1.4.1 ADA-S-PCA modification

The most natural way to improve performance of the S-PCA algorithm is to use the adaptive elastic
net (Zou and Zhang, 2009) instead of (16), i.e. to solve

argmin
A,B∈Rp×K

n∑
i=1

‖x(i) −AB�x(i)‖22 + µ
K∑
k=1

‖bj‖22 +
K∑
k=1

λk

p∑
j=1

wkj|bkj|

s.t. A�A = IK

(17)

where wk = (wk1, . . . , wkp)
�, k = 1, . . . , p, are vectors of weights. The adaptive elastic net allows

different degree of penalization for each coefficient. The weights should be small for nonzero
coefficients and large for zero ones to balance out the fact that �1-norm penalizes all the coefficients
equally. Thus, the weights wkj should be taken inversely proportional to the true sparse loadings.
In that case, mild penalty would be imposed on nonzero coefficients reducing their shrinkage while
more severe penalty would be imposed on zero coefficients forcing them to be estimated as zeros.

8

1.4.1 ADA-S-PCA modification
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Since we do not know the true sparse loadings, it is natural to take wkj = 1
vkj

, that is to take the
weights proportional to the ordinary loadings obtained from the SVD of X.

One can transform an adaptive elastic net problem to an elastic net problem by a simple trans-
formation of the data. Moreover, the weights are known in our case because the ordinary loadings
are the starting point for S-PCA algorithm. Thus the adaptive version (17) (which we refer to as
ADA-S-PCA) of the S-PCA algorithm adds up to a very simple modification requiring negligible
additional computation time. Still, the adaptive modification noticeably improves the performance
of the S-PCA algorithm, which was observed several times (e.g. Chen, 2011, or Leng and Wang,
2012).

On the other hand, property (b) of Remark 3 of the S-PCA algorithm cease to hold for ADA-
S-PCA. This implies, since ordinary PCs explain as much variance as possible, that ADA-S-PCA
must be highly suboptimal in terms of explained variance in data whenever the desired cardinality
is relatively high. We will observe this in Section 2.1.

1.4.2 IRLS-S-PCA modification

We replace the �1 penalty in (15) by the penalty function ρl of (5). Furthermore, the role of the
�2 penalty in (14) is only to ensure uniqueness of the solution. This would be unnecessary for the
numerical algorithm we will propose. Thus we drop the �2 penalty and propose to solve

argmin
A,B∈Rp×K

n∑
i=1

‖x(i) −AB�x(i)‖22 +
K∑
k=1

λk

p∑
j=1

log(b2kj + δ) s.t. A�A = IK (18)

with the help of the alternating minimization algorithm of Zou et al. (2006). That is: for a fixed
B, update A = UV� where U and V are from the SVD X�XB = UDV�, and, for a fixed
A, solve K independent penalized least squares problems of the form (6) using Algorithm 1. We
implemented the IRLS-S-PCA method in software R.2

The motivation behind this proposal is the geometry of the penalty function (5). With SPCA we
assume that the true (population) loadings are sparse. Since sparsity is defined in terms of �0-norm,
one should penalize �0-norms in (14) instead of �1-norms, which would result in best subset selection
problems instead of (16). Best subset selection problems are NP-hard due to the �0 penalty, and �1
penalty is commonly used as a convex relaxation of the problem. However, non-convex penalties
can naturally resemble �0 penalty better than �1 penalty does, see Figure 1. This comes at the
expense that the problem becomes non-convex, and must be solved iteratively. Nonetheless, we
hope that the obtained solution would still be closer to the �0-penalized optimum compared to the
�1-penalized optimum.

The reason for the concrete choice of the penalty function ρl stems from the algorithm we de-
veloped to minimize the resulting penalized least squares problem. The algorithm iterates between
two easily and analytically solvable tasks. This comes at the expense that the solution obtained via
the algorithm is not itself sparse, see again Figure 1. For a practical implementation of the algo-
rithm, one need to ensure sparsity of the obtained loadings by thresholding. Moreover, we want
to ensure our algorithm also allows one to pick the target cardinality for every PC. The simplest
way is to threshold the desired number of coefficients in the output β̂ of Algorithm 1. Instead, we
use a cumulative version of the algorithm, in which the weights actually used in (1) are products
of the weights computed from (1) in the last few steps, and we iterate until a prescribed number of
coefficients decrease under a fixed threshold.

2<http:// www.karlin.mff.cuni.cz/masak/irls_s_pca.R>.
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Our IRLS-S-PCA algorithm possesses the same favorable properties as the S-PCA algorithm
that were discussed in Remark 3. We ensure the property (a) by thresholding. Property (b) follows
from the fact that with no sparsity constraints the method only attempts to find a solution to (14). But
the starting point is exactly this solution (the same as in the case of S-PCA) due to the initialization
of the weights. And properties (c)-(e) are inherited from the S-PCA algorithm. Moreover, the
algorithm shows a superior numerical performance as displayed in Section 2.

1.5 Connections to previous work
Motivated by the search for an estimating procedure, that would be asymptotically as efficient as the
oracle procedure knowing the true support in advance (the famous lasso does not have this oracle
property), Fan and Li (2001) proposed to work with a concave penalty function. They presented
an iterative algorithm using local quadratic approximations to obtain the non-convex estimate (so-
called SCAD).

Later, Zou and Li (2008) proposed to optimize another concave penalty function via local linear
approximations. These are tight enough so that a one-step estimate can be asymptotically as efficient
as a fully iterated one, provided a reliable starting point. The well-known adaptive lasso (Zou,
2006) is such a one-step estimate. It has the oracle property while consisting of just two convex
optimization tasks, and it is the motivation behind the ADA-S-PCA algorithm presented later.

Our penalty function ρl does not fall into the framework of the previously mentioned papers
directly, because ρl is not concave on (0,∞). This has two consequences. First, we can not use
local linear approximations. Algorithm 1, only with δ > 0 fixed, essentially uses local quadratic
approximations, and these are not very tight. Thus a fully iterated estimate is needed. On the
other hand, these iterations have much simpler form than local linear approximations. Second, our
penalty function is differentiable at zero which implies the resulting estimate is not itself sparse.
The differentiability also implies that Algorithm 1 with a fixed δ > 0 is an instance of the Newton-
Rhapson algorithm.

Another distinction of our approach is that we let the regularizing parameter δ to vary. The
regularizing parameter was introduced by Hunter and Li (2005) to relieve the drawback of the
backward variable selection of the SCAD estimator of Fan and Li (2001). The varying regularizing
parameter does a similar job, and allows us in addition to avoid local minima near the initialization
point at the same time (see Daubechies et al., 2010, and references therein).

2 Examples
In this section, we first show a simulated example that displays differences between the approaches
described above. Then we move to a practical application of SPCA: analysis of voting records of
the Chamber of Deputies of the Parliament of the Czech Republic.

2.1 Simulated example
We generate a vector ṽ ∈ R200 with coefficient that are independent, uniformly distributed on the
interval (0,1). Then we randomly pick 150 of its coefficients and set them to zero, thus obtaining
a 50-sparse vector. We normalize this vector to obtain a 50-sparse unit vector v. Using the pro-
cedure described by Shen and Huang (2008), we create a covariance matrix Σ with the spectral
decomposition

Σ = θvv� +
200∑

j=2

vjv
�
j ∈ R200×200, (19)

10

1.5 Connections to previous work

2 EXAMPLES

2.1 Simulated example



METHODOLOGY

98

Figure 2  �Left: Sample ROC curves for θ = 5. Higher curve represents better performance. Right: Average 
(over 100 simulation runs) area under the curve as a function of θ.

Figure 2: Left: Sample ROC curves for θ = 5. Higher curve represents better performance. Right: Average (over 100
simulation runs) area under the curve as a function of θ.

Source: Own construction.

where θ > 1, and v2, . . . ,v200 ∈ R200 are orthonormal, all orthogonal to v. Thus the matrix Σ
is regular, its leading eigenvector v is associated with the largest eigenvalue θ, and all the other
eigenvalues are equal to one. We generate n = 100 independent samples from N (0,Σ) to obtain
the data matrix X. This procedure is repeated 100 times for every value θ ∈ {3, 4, 5, 6, 7}.

Model (19) was introduced by Johnstone (2001). Later, Paul (2007) and Johnstone and Lu (2009)
showed that PCA is not consistent under this particular model in the joint limit setting (p, n → ∞
and p/n → τ ) unless τ = 0. The model is called spiked covariance as data sampled from this
model are “spiked” in the direction of v and evenly spread in other directions (representing noise).
Vector v can be thought of as a signal and θ as the signal strength. The stronger the signal is (i.e. θ
is larger), more easy it is to distinguish it from noise. We are interested in estimating the signal v
from the data, i.e. we are interested in the first principal component.

First, we are concerned with the quality of the considered algorithms with respect to the esti-
mation of the support of v. For a fixed value of s, every considered algorithm identifies exactly s
coefficients as nonzero. It is natural to ask whether the correct coefficients were identified. One can
compute (for a fixed s) the true positive rate (TPR, the proportion of correctly identified nonzero
coefficients) and the false positive rate (FPR, the proportion of coefficients that were estimated as
nonzeros even though they are truly zero). If we plot these pairs for all the values of s, we obtain
an analogy to the so-called ROC curve as shown in the left panel of Figure 2. Note that our em-
ployment of the ROC curve differs from the typical usage in the context of binary classifiers. But
still, higher curve represents a better performance. Thus it is natural to use the area under the curve
as a measure of performance in order to have a single number comparing performances of different
algorithms. In the right panel of Figure 2, area under the curve is plotted against the signal strength
θ. For every θ ∈ {3, 4, 5, 6, 7}, 100 datasets were simulated by the above-described procedure, and
the average values are shown. As we can see in the figure, IRLS-S-PCA and ADA-S-PCA both
overcome S-PCA in terms of support estimation while there is only a negligible difference between
them.

11

Source: Own construction
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Figure 3  �Left: Angles between vector v and its estimates from our three methods for θ = 5, 6, 7 with s = 50. 
Right: Proportion of explained variance as a function of target cardinality s for θ = 5.Figure 3: Left: Angles between vector v and its estimates from our three methods for θ = 5, 6, 7 with s = 50. Right:

Proportion of explained variance as a function of target cardinality s for θ = 5.

θ

Source: Own construction.

Second, correct support estimation is not sufficient for reliable estimation of the respective PC.
Thus we compute angles between v and its estimates obtained by the considered algorithms with
the value of target cardinality s set to 50. Results are plotted in the left panel of Figure 3. Note
that the knowledge that v is 50-sparse is used solely for the purpose of this figure. Even though the
performance of ADA-S-PCA and IRLS-S-PCA with respect to support estimation is comparable,
IRLS-S-PCA clearly outperforms ADA-S-PCA regarding the angles between the estimated and true
vectors of loadings.

Finally, we are also interested in the amount of explained variance. Since no vector can explain
more variance in data than the first classical PC, we plot in the right panel of Figure 3 explained
variance for different values of target cardinality s as a proportion of the variance explained by
classical PCA.3 We see that IRLS-S-PCA explains higher proportions of variance than S-PCA, and
the proportion of variance for both of these methods approach one as s approaches to 200. This
is an empirical evidence that both IRLS-S-PCA and ADA-S-PCA reduce to classical PCA as the
cardinality constraint is lifted. On the other hand, ADA-S-PCA doesn’t have this property and thus
it is suboptimal in terms of explained variance.

2.2 Real-world example: analysis of voting records

2.2.1 Data description and objectives

In this section, we show an application of SPCA on a real data set, namely voting records (so-called
roll-call data) of the Chamber of Deputies of the Parliament of the Czech Republic. The data are

3 Again, only average values over 100 simulation runs are shown. This is for the sake of clarity and due to the space
restrictions. For the right-panel of Figure 2 the standard deviations are of order 10−2 with differences of order 10−3

across the respective algorithms. For the right-hand panel of Figure 3 the situation is similar, with the exception that
standard deviations of IRLS-S-PCA are one order lower than those of other methods.
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publicly available on the official website of the Chamber of Deputies.4 They give information about
deputies, their memberships in political parties and different committees, and most importantly
their voting records. The data are organized in several tables and date back to year 1993. We are
interested mostly in the table “hl_poslanec” with three variables: ID of the deputy, ID of the act,
and the individual vote. The only additional information we use comes from the table “poslanec”,
which enables us to align the deputies to the parties of their membership for the purposes of our
outputs. More detailed description of the data set can be found on the website of the Chamber of
Deputies.

Note that, from all available data, we are interested only in the voting records of the year 2015,
i.e. a one-year period of the current administration.

We have transformed the raw data (table “hl_poslanec”) into a data matrix X with entries

xij =






1, if the i-th deputy voted “yes” in the j-th act,
−1, if the i-th deputy voted “no” in the j-th act,
0, otherwise.

While the original data distinguish several scenarios, why a given deputy did not vote neither “yes”
nor “no” in the given act (e.g. he was registered and abstained from voting, he was registered but
failed to vote, or he wasn’t present), we regard all those scenarios the same as zeros. This is, of
course, mainly due to simplicity but also due to the fact that deputies are well aware that the reason
of their abstention is irrelevant. Just for information, there are approximately 35% of zeros in the
matrix X. Of course, there are no missing data in the sense that a deputy voted and we do not have
the information how.

The political situation in the Chamber of Deputies is following. Since the elections in 2014,
there is a majority coalition composed of CSSD, ANO, and KDU-CSL. The opposition is formed by
ODS, TOP 09, Usvit, and KSCM. As for the political positions of the parties, ODS is a traditional
right-wing party opposed by the communists of KSCM on the left-wing of the spectrum. TOP 09 is
centre-right, CSSD is centre-left, ANO is centre to centre-right and, finally, KDU-CSL holds a centre
position.

In 2015, 1837 acts took place, and there were no replacements among the deputies (which are
200 in the Chamber of Deputies) during that year. Thus the matrix X has 200 rows and 1837
columns. The voting record for the i-th deputy, i = 1, . . . , 200, is represented by the vector x(i) ∈
{−1, 0, 1}1837. One deputy thus correspond to a point in a 1837-dimensional space. From now on,
let n = 200 and p = 1837, i.e. X ∈ Rn×p.

PCA regards to finding a lower-dimensional subspace best approximating the 1837-dimen-sional
data points. If we take the information about the political affiliation of the representatives into
account, an interesting underlying structure in the data could be possibly revealed in the lower
dimension. Questions such as

• which parties are homogeneous and which are not,
• which deputies are outliers with respect to their parties, and
• which parties stick together, and which do not share the same view,

would be hopefully answered.

4<http://www.psp.cz/sqw/hp.sqw?k=1300>.
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2.2.2 Assumptions and their justification

For classical PCA, we need to choose a number of PCs to work with. For SPCA, we further need
to choose values of target cardinality for the PCs. To justify our choices, recall a data-generative
factor model (3).

First, how many PCs should we take into account? Two is the most prevalent option due to
the fact that two-dimensional approximation is most easily comprehensible. From the perspective
of model (3), dealing with just two PCs means that voting behavior of every respective deputy
can be described as a linear combination of two factors, up to a deputy-specific error. This seems
appropriate, as one can expect from the very start that one PC would discriminate between coalition
and opposition and the other between the right-wing and left-wing parties.

Second, what values of target cardinality should be chosen? Considering model (3) with K = 2,
there are two unobserved factors, and we observe noisy realizations of those factors in the domain
of acts. The question thus translates to how many acts do we need in order to be able to describe
the factors reliably. Note that the sparsity assumption seems very reasonable from this perspective.
We have chosen 20 acts to describe the first PC and 15 acts to describe the second PC, that is 35 in
total. This concrete choice is based on data-non-related considerations. The lists of important acts
created by political scientists or journalists often count between 20 and 35 acts per year. We have
simply chosen the sum of the desired target cardinalities to be an upper bound to this expert choice
because we also believe that 35 acts should be enough to describe the two PCs.

2.2.3 Results

Figure 4 shows results of classical PCA (panel (a)) and SPCA performed by the algorithms presented
in Section 1.4 (panels (b)-(d)). All the panels give qualitatively similar results. In all cases, the
first sparse PC discriminates between the coalition and the opposition, and the second sparse PC
distinguishes between the right and left wings. Even more delicate distinctions can be made. For
example, the party Usvit is somehow in the middle of the plots, and KDU-CSL is the most centered
of the coalition parties. Also, one can notice two outliers of Usvit in Figure 4 (b): the right-most
deputy of the Usvit located in between the deputies of KDU-CSL and the bottom-left-most deputy
surrounded by representatives of KSCM. These two outliers can be observed also in (c) and (d) of
Figure 4, and they are truly the same deputies.

Nonetheless, the IRLS-S-PCA algorithm (Figure 4 (d)) gives much smoother and more easily
interpretable results than the other algorithms. It sharply discriminates between the coalition/op-
position and left-wing/right-wing features, thus the coalition is shown to be in the centre political
position. Also, ANO is better separated from CSSD referring more closely to their expected position.
To sum up, Figure 4 (d) captures best the general perception of the Czech political scene.

SPCA reveals a useful additional piece information as opposed to methods commonly used for
analysis of voting data (see Clinton et al., 2004, for an overview) that do not assume sparsity.
Namely, the variable selection property indicate which acts are important. Sadly, even though pan-
els (b)-(d) of Figure 4 are qualitatively similar, the acts selected to describe the sparse PCs differ
noticeably among the methods. There are only three acts that were selected by all methods. These
are:

• act no. 60 403, on the agenda of the meeting, specifically whether a specific amendment
should be considered first,

• act no. 61 973, on an amendment on the state budget draft for 2016,
• act no. 62 034, on the state budget draft as a whole.

14
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Figure 4  �Voting records of the Chamber of Deputies of the Parliament of the Czech Republic projected onto 
a plane given by: (a) first two ordinary PCs, (b) first two sparse PCs obtained via S-PCA, (c) first two sparse 
PCs obtained via ADA-S-PCA, (d) first two sparse PCs obtained via IRLS-S-PCA. For (b)-(d) the cardinality 
is 20 for the first sparse PC and 15 for the second sparse PC.

Figure 4: Voting records of the Chamber of Deputies of the Parliament of the Czech Republic projected onto a plane
given by: (a) first two ordinary PCs, (b) first two sparse PCs obtained via S-PCA, (c) first two sparse PCs obtained via
ADA-S-PCA, (d) first two sparse PCs obtained via IRLS-S-PCA. For (b)-(d) the cardinality is 20 for the first sparse PC
and 15 for the second sparse PC.

Source: Own construction.

On one hand, it is convenient that the act on the state budget draft as a whole was picked by
all the methods. On the other hand, it is unseemly that behind the act no. 60 403 there is a hidden
agenda, and it takes an expert knowledge and going through the stenographic records to discover
what the agenda is. The same holds for the act no. 61 973. Nonetheless, this does not change the
fact that the sparse representation of the PCs has a practical impact. We give the following example.

Suppose we wish to project another subject onto the plane given by the first two PCs in order to
visualize, how the subject’s political opinions relate to the deputies and the parties. If the PCs are
sparse, the only information that we need is how would the subject vote in the acts that correspond

15

Source: Own construction
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to nonzero loadings coefficients. Thus we can have the subject respond to only several questions,
and the final projection will still be punctual. We reflect on similar considerations further in the
Discussion.

Finally, we note that IRLS-S-PCA seems fairly robust regarding the choice of target cardinali-
ties. Varying the target cardinalities around the chosen value alters the resulting figure negligibly.
However, if we allow one PC to be described only by less than 10 acts, the plots get noticeably
distorted. On the other hand, the number of acts describing one PC can be relatively high but, of
course, we aim for the most parsimonious and yet credible representation. As an experimental test
of robustness of IRLS-S-PCA, we also tried several times to recalculate the two-dimensional projec-
tion with 10 percent of deputies left out and projected onto the subspace subsequently. The results
were fairly similar. Also, we would like to note that in a three-dimensional projection, the first two
PCs remain very much alike as in the two-dimensional projection. Moreover, the clusters made by
parties are still well-separated. We do not report these results due to space restrictions.

Discussion and conclusion
Our algorithm operates with two tuning parameters: λ and δ. At the moment, we update δ based
on a rule of thumb (see default setting in Algorithm 1) and enforce the desired target cardinality
heuristically. It would be desirable to understand better the relationship between the tuning param-
eter λ, regularizing parameter δ, and the resulting cardinality. Such a knowledge would possibly
lead to a better strategy for choosing the parameters. Another approach to the choice of λ is to find
solutions on a grid of values of λ and pick a value of λ leading to the desired cardinality among
them. We believe that methods described in Mazumder et al. (2010) can be employed for this pur-
pose. However, we obtain promising results with the rule of thumb and the simple heuristic, which
is computationally less demanding.

In analyses similar to our example with voting records, the number of PCs is often chosen based
on the famous “elbow plot” (Jolliffe, 2002), and the values of target cardinality for every PC are
chosen such that every sparse PC explains some relatively high proportion of variance explained
by the respective standard PC (e.g. Zhang, 2011). We do not recommend this procedure because
it leads to too many subsequent decisions based solely on the variance in data. Moreover, this
approach simply does not work well for complex data such as the voting records. In the case of
our voting records, the previous strategy would lead us to choose 2-3 PCs and the values of target
cardinality in hundreds for every PC. Thus we would have much more coefficients to estimate in
our model than we can hope to estimate reliably from just 200 observations (deputies). This is the
reason why we choose the number of PCs and the respective target cardinalities based on additional
considerations, not in a data-driven way.

In the analysis of voting records, we show that SPCA produces better interpretable results than
classical PCA. The variable selection property can be utilized to choose important acts. This could
be potentially used, for example, to automatically create voting calculators – a popular and at the
present manually designed tool that help voters to determine their conformity with different parties
and representatives. However, we gave examples why appreciable expert knowledge about actions
in the parliament is vital in evaluating the usage of SPCA in this way.

For the voting data, one might naturally wonder whether the sum-of-squares criterion we work
with throughout the paper is appropriate. The penalization techniques discussed in Section 1.3
could be readily extended to the framework of penalized likelihood. As a probabilistic model for
the votes, one could use for example multinomial distribution. Nonetheless, we restrained from
probabilistic model formulation and used sum-of-squares criterion. Thus we view the voting records
for deputies as points in standard euclidean space. To our perception, this is somehow natural and,

16
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again, the bottom line is that we delivered promising results with the simplest-to-study sum-of-
squares criterion.
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APPENDIXAppendix
Here we prove Proposition 3. We will use the following two lemmas.
Lemma 4. The following properties hold:

(a) Let δ > 0, β ∈ Rp and let wj =
1

β2
j+δ

, j = 1, . . . , p. Then we have

∇β f(β|δ) = ∇β g(β,w|δ). (20)

(b) Let δ > 0 and x, y ∈ R. Then we have

log(x2 + δ)− log(y2 + δ)− 2
y(x− y)

x2 + δ
≥ (x− y)2

x2 + δ
, (21)

and equality in (21) holds if and only if x = y.

Proof. For (a), simply calculate the gradients

∇β f(β|δ) = −2X�(Y −Xβ
)
+ 2λ

[ βj

β2
j + δ

]p
j=1

(22)

∇β g(β,w|δ) = −2X�(Y −Xβ
)
+ 2λ

[
wjβj

]p
j=1

(23)

and use that wj =
1

β2
j+δ

. This gives us (a).

For (b), since 2y(x−y)
x2+δ

+ (x−y)2

x2+δ
= x2−y2

x2+δ
, it is enough to show that

log(x2 + δ)− log(y2 + δ)− x2 − y2

x2 + δ
≥ 0.

For a fixed x > 0 is is easy to verify that h(y) = log(x2 + δ) − log(y2 + δ) − x2−y2

x2+δ
has a unique

minimum in y = x by differentiation. The same holds for a fixed x < 0 and x = 0.
Lemma 5. Under the assumptions of Proposition 3 it holds for l ∈ N:

(
Xβ(l+1) −Y

)�(
Xβ(l) −Xβ(l+1)

)
= −λ

p∑

j=1

β
(l+1)
j (β

(l)
j − β

(l+1)
j )

(β
(l)
j )2 + δl

. (24)

Proof. Since ∇β g(β(l+1),w(l)|δ) = 0 from the first order optimality condition, we have

0 = (β(l) − β(l+1))�∇β g(β(l+1),w(l)|δ)

= 2
(
Xβ(l+1) −Y

)�(
Xβ(l) −Xβ(l+1)

)
+ 2λ

p∑

j=1

β
(l+1)
j (β

(l)
j − β

(l+1)
j )

(β
(l)
j )2 + δ

.

Now we are ready to prove Proposition 3. We calculate for l ∈ N :

f(β(l)|δl)− f(β(l+1)|δl+1) =

= ‖Y −Xβ(l)‖22 − ‖Y −Xβ(l+1)‖22 + λ
p∑

j=1

[
log

(
(β

(l)
j )2 + δl

)
− log

(
(β

(l+1)
j )2 + δl+1

)]

= ‖Xβ(l) −Xβ(l+1)‖22 + 2
(
Xβ(l+1) −Y

)�(
Xβ(l) −Xβ(l+1)

)

+λ
p∑

j=1

[
log

(
(β

(l)
j )2 + δl

)
− log

(
(β

(l+1)
j )2 + δl+1

)]

≥ λ
p∑

j=1

[
log

(
(β

(l)
j )2 + δl

)
− log

(
(β

(l+1)
j )2 + δl+1

)
− 2

β
(l+1)
j (β

(l)
j −β

(l+1)
j )

(β
(l)
j )2+δl

]

≥ λ
p∑

j=1

(β(l+1)−β(l))2

(β(l))2+δl
≥ λ

p∑
j=1

(β(l+1)−β(l))2

(β(l))2+δ0
.
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The second equality is just a tedious algebra. In the first inequality, the squared �2-norm is dropped
and Lemma 5 is used. In the second inequality, δl+1 is substituted for greater δl reducing the overall
value of the expression, and then Lemma 4 (b) is used. In the last inequality, δl is substituted again
for a greater δ0.

Note the previous calculations suggest that f(β(l)|δl) ≥ f(β(l+1)|δl+1) for all l ∈ N. Thus for
all l ∈ N we have

f(β(1)|δ1) ≥ f(β(l)|δl) ≥ λ

p∑

j=1

log
(
(β

(l)
j )2 + δl

)
≥ λ

p∑

j=1

log
(
(β

(l)
j )2 + δ�

)
, (25)

from which it follows that there exists a constant c such that for all l ∈ N and j = 1, . . . , p it holds
|β(l)

j | ≤ c. It follows that

f(β(l)|δl)− f(β(l+1)|δl+1) ≥
λ

c2 + δ0

p∑

j=1

(β(l+1) − β(l))2 =
λ

c2 + δ0
‖β(l+1) − β(l)‖22. (26)

It also follows from (25) that {f(β(l)|δl)}∞l=1 converges for l → ∞ monotically to some finite
value, let us label it f �. Thus summing (26) for l = 1, 2, . . . we obtain

f(β(1)|δ1)− f � ≥ λ

c+ δ0

∞∑

l=1

‖β(l+1) − β(l)‖22,

from which it follows

‖β(l+1) − β(l)‖2 → 0. (27)

Next, let us have {β(lm)}∞m=1 ⊂ {β(l)}∞l=1 such that β(lm) → β�. Existence of this convergent
subsequence follows from compactness of the level sets of functions f(β|δ), δ > 0. Then

w
(lm)
j =

1

(β
(lm)
j )2 + δlm

→ 1

(β�
j )

2 + δ�
= w�

j

and from (27) also β(lm+1) → β�. By taking the limit of the first order optimality condition
∇β g(β(lm+1),w(lm)|δlm) = 0 we obtain ∇β g(β�,w�|δ�) = 0, and by using Lemma 4 (a) we have
∇f(β�|δ�) = 0, which completes the proof.
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