
ANALYSES

282

Equivalence of  Fault Trees  
and Stochastic Petri Nets 
in Reliability Modeling
Ondřej Vozár1  | University of Economics, Prague, Czech Republic

Abstract

Modeling of reliability of the complex systems (machines, large networks, human body) is an important area 
of recent research. There are two main approaches applied: i) fault trees, ii) Petri nets. For the probabilistic 
study of a system is vital to know its minimal cut/minimal path sets. Both for fault trees and Petri Nets  
it is an NP-hard problem.  Liu and Chiou (1997) described the equivalence of both representations for  
a given system. Furthermore, they found a top-down matrix algorithm to find critical cuts and minimal paths 
of the Petri net of the system. They claim without proof that their algorithm is more efficient than the ones 
for fault trees. We present both representations of a system. The algorithm is illustrated on a simple example  
of a three-masted vessel and a more complex “three-motor” system by Vesely et al. (1981).

INTRODUCTION
The demand for a more precise estimation of the reliability of complex systems has steadily increased 
because of both legal regulation and the growing complexity of real industrial systems. Such a complex 
system is for example a power plant, airplane, machine, reactor, large computer or transportation network, 
a human body. Applications of the methods range from energetics, engineering, transportation, computer 
science to safety studies, and medicine.

For reliability analysis of complex systems the following standard methodologies are used: i) fault 
trees (for the state of the art of this approach see Limnios, 2007), ii) Petri Nets (see monograph of Bause 
and Kritzinger, 2002).

Both methodologies have been further developed mostly assuming exponentially distributed time  
to failure. This assumption is unrealistic because it implies that parts of the system do not age.

In both approaches a system is represented as a tree in the language of the graph theory. If the fault 
tree method is applied, it is vital to know minimal cuts and minimal paths sets of a fault tree. However, 
finding all minimal cuts and minimal path sets of a fault tree is an NP-hard problem (Rosenthal, 
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1975). On the other hand, a fault tree representation is suitable to derive the probability distribution  
of the reliability of a system and its estimators (Limnios, 2007).

Liu and Chiou (1997) established a one-to-one relation between a fault tree and a Petri Net of a system. 
They also proposed a top-down matrix algorithm to find all minimal cuts and minimal paths of the system.  
They claim without any proof this algorithm is more computationally efficient than algorithms for fault 
trees. To our best knowledge no complexity analysis or computational studies have been carried out. From 
the theoretical point of view Petri Nets is not a framework suitable to derive the probability distribution 
of reliability of a system and its estimators (Bause and Kitzinger, 2002).

If claim of Liu and Chiou (1997) is true, the following strategy for derivation of distribution of reliability 
functions and its estimators in general setting (gamma, log-logistic distribution of time to failure) would  
be efficient. First, transformation a fault tree of a system to a Petri Net is carried out to find minimal cut sets  
and minimal path sets. Then, all derivations are done in the fault tree setting.

The paper is organized as follows. The first part introduces elements of reliability theory. Secondly, 
concepts of fault trees and Petri Net are introduced. Thirdly, top-down matrix algorithm of Liu  
and Chiou (1997) to find all minimal cut sets and minimal paths sets is presented. Then, all the methods are 
illustrated in the model example of a three-masted vessel (Kubelka, 2016). Finally, both methods are applied  
to a more complex case of the “three-motor” system (Vesely et al., 1981) to assess Petri Nets based method 
to find minimal cut/minimal path sets. 

1 ELEMENTS OF RELIABILITY THEORY
Systems are classified by their complexity to Single-Component Systems and Multi-Component Systems.  
The second classification distinguishes Repairable and Non-Repairable Systems. We focus  
on Non-Repairable Systems in this article only.

1.1	Single Component Systems 
Let X be a continuous random variable representing time to failure of the system with cumulative 
distribution function F(t) = P(X ≤ t) and its density function f(t).

Survival function (reliability) is the complementary function to cumulative distribution function:

R(t) = 1 – F(t) = P(X > t) = ∫t
∞f(x) dx.    � (1)

Note, that we have R(0) = 1 and R(∞) = 0.
Hazard rate (instantaneous failure rate) at time t is defined as:

� (2)

Mean time to failure (MTTF) is defined as the mean of the time to failure, e.g. E(X).
The exponential distribution is the most used for modeling time failure in reliability theory. It gives  

a system without memory (a system is not aging) or a Markovian system, e.g. for fixed x > 0, t > 0 we have:

P(X > x + t || X > x) = P(X > t).� (3)

For fixed time t > 0  and parameter λ > 0 we get:

f(t) = λe–λt, F(t) = 1 – e–λt, R(t) = e–λt, h(t) = λ, MTTF = E(X) = 1/λ. � (4)
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The assumption on exponentially distributed time to failure will be used in the section Application.

1.2	Multiple Components Systems 
Let us consider a binary system with n components: C = {1, 2, …, n}. For each component i we define  
a binary variable xi (0: the component is in good state, 1: the component is down).

Let x = (x1, x2, …, xn) ∈ {0,1}n be the vector jointly describing the states of the components. We define 
a structural function φ(x)  with values {0,1} as:

φ(x) = 1, if the system is in a good state, φ(x) = 0, if the system is down.

A system is said to be series if its good functioning depends on the functioning of all its components. 
If at least one component fails, then the system also fails. In fault tree setting is modeled by gate OR.  
The structural function of the series system is given by:

� (5)

A system is said to be parallel, if its good functioning is assured by functioning of least one  
of its components.  Only if all components fail, then the system also fails. In fault tree setting is modeled 
by gate AND. The structural function of the parallel system is given by:

� (6)

1.3 Coherent Systems
In reliability theory most of the techniques are limited only to coherent systems. A coherent system  
has these properties:

•	 it consists only of parallel and series systems (e.g. gates AND and gates OR),
•	 it has no redundant component (i.e. its states do not affect the state of the system),
•	 it does not contain a component and its negation simultaneously,
•	 it contains neither loops nor circuits in its graph representation.

For state assessment of a system following concepts are defined (Limnios, 2007):
•	 path: a subset of components whose simultaneous good functioning assures good functioning  

of the system regardless of the functioning of the other components,
•	 minimal path: a path which does not contain another path,
•	 cut set: a subset of components whose simultaneous failure leads to the system failure regardless 

of the failure of the other components,
•	 minimal cut set: a cut set that does not contain another cut set.

Set of the minimal paths is denoted as:

C = {C1, C2, …, Cc}.

Set of minimal cuts is denoted as:

K = {K1, K2, …, Kk}.

By minimal paths set or minimal cuts set its structural function is simplified as:
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� (7)

� (8)

1.4 Probabilistic Study of Coherent Systems
Let's consider a coherent system S = (C, φ)  of order n ≥ 1 (number of its components). Let Xi  
be a Bernoulli random variable with parameter  pi, which describes the state of the component i (i = 1, 2,…, n)  
with values xi ∈ {0,1}. Then reliability of the system R(p), where p = (p1, p2, …, pn) is the probability, that 
the system is in a good state. We can express reliability also by minimal cut sets or minimal path sets as:

R(p) = P(C1 ∪ C2 ∪ … Cc) = 1 – P(K1 ∪ K2 ∪ … Kk).� (9)

Different bounds for reliability function was established (see Limnios, 2007) using knowledge  
of minimal paths set and minimal cuts set.

Minimal sets bounds are established as follows. A lower bound is derived through minimal cut sets 
and an upper bound is derived through minimal paths sets:

� (10)

If the minimal cuts are 2-by-2 disjoint sets (Ki ∩ Kj is empty, if i ≠ j), then upper bound equals to R(p). 
The same rule applies to minimal paths and the lower bound of R(p).

Trivial bounds are based on the observation that the reliability of a coherent system lies between  
the reliability of the series system and reliability of the parallel system:

� (11)

2 FAULT TREES AND PETRI NETS
From now all the methods will be illustrated on the example of a three-masted vessel (Kubelka, 2016). 
The vessel is maneuverable, if all its three components work (see Figure 1):

•	 the keel is not broken,
•	 the helm is maneuverable,
•	 at least one of the three masts are not broken, 
•	 each mast is not broken, if both sail and spare are not broken.

2.1 Fault Trees

Table 1 Fundamental operators of fault trees 

Graphic Symbol Name Meaning

OR The output is generated if at least one  
of the inputs exists

AND The output is generated  
if all the inputs exist

Source: Limnios (2007)
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The basic notions and symbols of fault trees used in this paper are summarized in Tables 1 and 2.
Note that in this form fault trees representation of a system enables only static analysis of the reliability 

of the system. It is necessary to extend this setting by adding a time variable. However, this generalization 
is not the goal of the paper.

For such a simple system is easy to find all minimal cuts and paths manually. It has 10 minimal cuts: 
K1 = {1}, K2 = {2}, K3 ={3,5,7}, K4 = {3,5,8}, K5 = {3,6,7}, K6 = {3,6,8}, K7 = {4,5,7}, K8 = {4,5,8}, K9 = {4,6,7}, 
K10 = {4,6,8}. For example minimal cut K1 means that the vessel is broken because the keel of the vessel 
is broken.

It has 3 minimal paths: C1 = {1,2,3,4}, C2 = {1,2,5,6}, C3 = {1,2,7,8}.  Minimal path C1 means that  
the vessel is maneuverable, because of the keel, the helm, and the first mast (i.e. both its spar and sail  
are not broken) of the vessel work well.

Then the fault tree of the three-masted vessel is then constructed as – see Figure 1.

Table 2 Events of fault trees	

Graphic Symbol Meaning

Rectangle Top or intermediate event (the system is down)

Circle Basic event

Triangle Transfer (fault tree is developed further)

Source: Limnios (2007)

 Ship not maneuverable

Helm 
K.O.

All 3 masts 
K.O.

Keel 
K.O.

1st mast 
K.O.

sail
K.O.

spar 
K.O.

sail 
K.O.

spar 
K.O.

sail
K.O.

spar 
K.O.

2nd mast 
K.O.

3rd mast 
K.O.

1

3 4 5 6 7 8

2

Figure 1  Fault tree of the three-masted vessel

Source: Kubelka (2016)
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Note that finding all minimal cuts of a coherent system is an NP-hard problem (Rosenthal, 1975). 
It means that the computational complexity of any algorithm grows exponentially with the number  
of components of a system. Even for a system with moderate size (a system with more than 20 components) 
is quite computationally demanding.

2.2 Petri Nets
Petri Nets (Petri, 1962) was designed to study information systems in computer science. They have 
been further developed and applied in many areas, also in modeling reliability of complex systems  
(see monograph of Bause and Kritzinger, 2002, among others). The basic notions and graphic symbols 
of Petri Nets are summarized in Table 3.

For reliability modeling, Place-Transition Petri Nets and Stochastic Petri Net are used.
A Place-Transition Petri Net (Bause and Kritzinger, 2002) is defined as 5-tuple PN = (P, T, I+,I–,M0), 

where:
•	 P = {p1, p2, …, pm} is a finite and non-empty set of places,
•	 T = {t1,t2, …, tn}  is a finite and non-empty set of transitions,
•	 P ∩ T = ∅
•	 I+, I–: P × T → N0   are oriented incidence functions (arcs),
•	 M0: P ⟶ N0 is a vector of the initial state of the systems.

Note that places represent for example a server or a hardware/software component of a system or a module 
of a software system. Transitions represent relations of different components of a system (i.e. transactions 
between servers or software components).

Place-Transition Petri Nets enable an only static analysis of the coherent system. To study the reliability 
of the system in time domain Place-Transition Petri Nets were generalized to Stochastic Petri Nets.

Stochastic Petri Net (Natkin, 1980; Molloy, 1981) with continuous time SPN = (PN, Λ) is defined  
as Place-Transition Petri Net PN = (P, T, I+, I–, M0 )) equipped by a parameter set Λ = (λ1, λ2, …, λn ).

The role of a parameter set Λ is as follows:
•	 the parameter λi serves for modeling activation time of transition ti,
•	 the transition ti can be then activated only if there is a token in the corresponding place pi,
•	 transition times Ti of a transition ti are usually modeled as independent exponential random 

variables Ti ∼ Exp(λi).

2.3 Equivalence between fault tree and Place-Transition Petri Net
Liu and Chiou (1997) found in their seminal paper one-to-one relationship between Place-Transition 
Petri Net and corresponding fault tree.

Table 3 Symbols and notions of Petri Nets	

Graphic Symbol Notion Meaning

Circle Place Objects, components of a system

Dot Token Specific value, state of the object, component

Rectangle Transition Activities changing state or value of the object

Arrow Arc Connection of places and transitions

Source: Own construction by Bause and Kritzinger (2002)
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Both top and intermediate events and basic events are modeled as places in Petri Nets setting.  
This is why these events in the fault tree setting resemble a hardware/software component of a system.

Fault tree of the three-masted vessel (see Figure 1) is transformed into Stochastics Petri Net  
– see Figure 2.

Liu and Chiou (1997) also developed a recursive top-down matrix algorithm to find both minimal 
cut sets and minimal path sets simultaneously.

This method proceeds as follows:
•	 write down the numbers of places horizontally if the output place is connected by multi-arcs  

to transitions,
•	 write down the numbers of places vertically if the output place is connected by an arc to a common 

transition,

Table 4 Fundamental operators of fault trees and its Petri Nets representation

Fundamental Operator
Structural Function φ Petri Net

Graphic Symbol Name

 
OR φ(x) = 1 – (1 – x1)(1 – x2)

AND φ(x) = x1x2

Source: Own construction by Liu and Chiou (1997)

T

G11 2

G2 G3 G4

3 4 5 6 7 8

Figure 2  Stochastic Petri Net of the three-masted vessel

Note: T: top event, G: gate (fundamental operators AND, OR), a place with token:  .
Source: Own construction
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•	 when all places are replaced by places representing basic events, a matrix is created. If there  
is a common entry located between rows or columns, it is also the entry present in each row  
or column. The column vectors of the matrix contain cuts sets, the row vectors then paths sets,

•	 finally select the minimal cuts sets and minimal path sets.
Liu and Chiou (1997) claim without any proof that this algorithm is much simpler than  

the corresponding ones for fault trees. By my best knowledge there have not been done any computational 
studies of algorithms to find minimal cut/path sets. Also, the efficient implementation of the algorithm  
is still an open problem. If the conjecture of the authors is true, then it would be efficient to transform 
the fault tree to Petri Net and find the minimal cuts/path sets. Anyway, to find minimal cut sets for  
a Petri Net is also an NP-hard problem. It follows from a one-to-one relation between a fault tree  
and a Petri Net and NP-hardness of minimal cut sets problem for a fault tree.

The schematic description of the method for the three-masted vessel is given in Figure 3.

The algorithm browses the Petri Net from its top places to down. The places from the current 
level are written down in one row of a matrix for a series system. On the other hand, the places 
from a parallel system are written down in one column of a matrix. Basic event (a place in a Petri 
Net) is represented by a number, intermediate event (logical gate of a Petri Net) is represented 
by symbols like G1, G2. It symbolizes another level of the Petri Net to be browsed in the next 
step. The algorithm stops, if we reached the lowest level of a Petri Net, i.e. it browsed all logical 
gates of a system. The all minimal cut/path sets of the three-masted vessel are found to derive  
its reliability function.

3 APPLICATIONS
Methods presented above are applied to the example of a three-masted vessel (Kubelka, 2016) and a more 
complex “three motors system” (Vesely et al., 1981). Time to failure of the components of both systems 
is assumed to be independent exponentially distributed random variables as well.

3.1 Reliability Function of the Three-Masted Vessel
Let us consider that time to failure all components of the three-masted vessel (Kubelka, 2016)  
are independent exponentially distributed with parameters given in Table 5.

 

1 G1 2

G2
1 G3 2

G4

3 4 1 3 4 2 1 3 4 2
1 5 6 2 1 5 6 2 1 5 6 2

7 8 1 7 8 2 1 7 8 2

3 3 3 3 4 4 4 4
1 5 5 6 6 5 5 6 6 2

7 8 7 8 7 8 7 8

3 3 3 3 4 4 4 4
1 5 5 6 6 5 5 6 6 2

7 8 7 8 7 8 7 8

Cuts Sets

 Minimal 
Cuts Sets

Paths 
Sets

Minimal Paths 
Sets

Basic Place
Matrix

Figure 3  Method for finding minimal cuts/paths sets by Liu and Chiou (1997)

Source: Own construction
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The reliability functions of the keel and the helm are known. To derive the reliability function of the 
vessel the survival function of the three masts must be derived first.

The survival function of one mast is a product of survival functions of its sail and spar. It gives for t > 0:

� (12)

The system of all three masts is a parallel system of the masts, therefore its survival function is for t > 0:

� (13)

The three-masted vessel is a series system consisting of the keel, the helm, and three masts. Therefore, the 
survival function of the vessel is the product of survival functions of these three components, i.e. for t > 0:

� (14)

The reliability of the vessel is strongly affected by the reliability of the system of three masts. Therefore, 
safety measures should focus mainly on the reliability of the sails and spars (see Table 6).

Table 5 Time to failure distribution of the components	

Table 6 Reliability function of the vessel	

i Component MTTF (hours) Ri(t)

1 Keel 2 000 R1(t) = e–t/2 000

2 Helm 1 000 R2(t) = e–t/1 000

3 Sail of the 1st mast 200 R3(t) = e–t/200

4 Spar of the 1st mast 500 R4(t) = e–t/500

5 Sail of the 2nd mast 200 R5(t) = e–t/200

6 Spar of the 2nd mast 500 R6(t) = e–t/500

7 Sail of the 3rd mast 200 R7(t) = e–t/200

8 Spar of the 3rd mast 500 R8(t) = e–t/500

Source: Own construction

Time (hours)
Reliability function of

Keel Helm 3 masts Total

100 0.9512 0.9048 0.8724 0.7509

200 0.9048 0.8187 0.5724 0.4240
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Table 6 		  (continuation)

Table 7 Minimal sets bounds and trivial bounds of reliability function of the vessel

Time (hours)
Reliability function of

Keel Helm 3 masts Total

300 0.8607 0.7408 0.3242 0.2067

400 0.8187 0.6703 0.1716 0.0942

500 0.7788 0.6065 0.0879 0.0415

600 0.7408 0.5488 0.0443 0.0180

700 0.7047 0.4966 0.0222 0.0078

800 0.6703 0.4493 0.0111 0.0033

900 0.6376 0.4066 0.0055 0.0014

1 000 0.6065 0.3679 0.0027 0.0006

Source: Own construction

Time (hours)
Lower bound

Reliability  
function R(t)

Upper bound

Trivial Minimal cuts sets Minimal path sets Trivial

100 0.10539922 0.70945428 0.75090010 0.81227589 0.99999832

200 0.01110900 0.28226174 0.42401196 0.45402751 0.99984388

300 0.00117088 0.07071146 0.20673107 0.21643080 0.99844529

400 0.00012341 0.01321632 0.09415493 0.09681565 0.99354886

500 0.00001301 0.00207403 0.04151348 0.04218520 0.98299794

600 0.00000137 0.00029443 0.01801734 0.01817896 0.96576308

700 0.00000014 0.00003957 0.00775945 0.00779717 0.94201188

800 0.00000002 0.00000517 0.00332898 0.00333761 0.91268718

900 0.00000000 0.00000067 0.00142551 0.00142745 0.87906209

1 000 0.00000000 0.00000009 0.00060985 0.00061028 0.84244015

Source: Own construction

Trivial bounds of the reliability function provide an extremely poor approximation of the reliability 
function (see Table 7). Minimal cuts set bound provide quite tight intervals for reliability function. Neither 
minimal cuts set, nor minimal paths sets are 2-by-2 disjoint, therefore neither lower bound nor upper 
bound equals the reliability function.
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3.2 Three-Motor System
The three-motor system by Vesely et al. (1981) is often used as a benchmark for the assessment  
of algorithms in the field of reliability. It models a real-life control system of three motors. To shut down 
the system, it impresses a 60-second signal test. After 60 seconds, it is supposed to shut down all three 

EMF applied
to the 1st motor

for t > 60 s
T1

G1M1

G2M1 G3M1

G5M12M1G4M11M1

3M1 G6M1

G7M1 7M1

8M1 9M1 10M1

6M1

4M1 5M1

Figure 5  Fault tree for the 1st motor in “three-motor” system

Source: Own construction by Vesely et al. (1981)

Overrun of any motor
after test is initiated

EMF applied
to the 1st motor

for t > 60 s

T1 T2 T3

EMF applied
to the 2nd motor

for t > 60 s

EMF applied
to the 3rd motor

for t > 60 s

Figure 4  Fault tree for “three-motor” system

Source: Own construction, by Vesely et al. (1981)
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motors. The control then reveals failure of the system if the electromagnetic force (EMF) is applied  
to any of the three motors for more than 60 seconds after the signal test started.

The motors are in series wiring to the control system (see Figure 4 for its fault tree and Figure 6 for 
its Petri Net). All three motors are the same (see Figure 5 for its fault tree and Figure 7 for its Petri Net).  
We refer readers to Vesely et al. (1981), p. 116 for the technical details of the motor components.

T

T2T1 T3

Figure 6  Place-Transition Petri Net for “three-motor” system

Source: Own construction by Vesely et al. (1981)

T1

G1M1

1M1

G2M1 G3M1

2M1 G5M1G4M1

4M1 5M13M1 G6M1

6M1 7M1G7M1

9M18M1 10M1

Figure 7  Place-transition Petri Net for the 1st motor in “three-motor” system

Source: Own construction by Vesely et al. (1981)
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2 G5
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1
3 6 G8 7

2 4 5

1
3 6 8 7

9
10

2 4 5

Basic Place 
Matrix

Figure 8	 Basic Place Matrix of the 1st motor in “three-motor” system for finding minimal cut/path sets by method  
	 Liu and Chiou (1997)

Source: Own construction

For simplicity, only a schematic description of the method of Liu and Chiou (1997) to find the Basic 
Place Matrix of the first motor is presented below (see Figure 8).

The first motor has 12 minimal cuts: K1 = {1,2}, K2 = {1,4}, K3 = {1,5}, K4 = {2,3,6}, K5 = {3,4,6},  
K6 = {3,5,6}, K7 = {2,3,7}, K8 = {3,4,7}, K9 = {3,5,7}, K10 = {2,3,8,9,10}, K11 = {3,4,8,9,10}, K12 = {3,5,8,9,10}. 
It has 4 minimal paths can: C1 = {1,2,3,4,5}, C2 = {1,2,4,5,6,7,8}, C3 = {1,2,4,5,6,7,9},C4 = {1,2,4,5,6,7,10}. 
We skip subscript of the first motor 1M to keep notation simple.
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Figure 9  Bounds of the survival function of “three-motor” system 

Source: Own construction
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The system is a series system of three identical motors with n = 30 components. It means that  
the minimal cut sets of the system are a union of the minimal cut sets of the three identical motors.  
The minimal path sets of the system are the Cartesian product of the minimal path sets of the three 
identical motors. Therefore “three-motor” system has 3 × 12 = 36 minimal cuts and 43 = 64 minimal 
paths. In such a complex case reliability function cannot be derived analytically.

Trivial bounds of the survival function (Formula (11)) usually fail for the systems with a high number 
of components. The bounds by Formula (10) often work quite well. For the system with independent, 
identically exponentially distributed times to failure (with MTTF = 1 000 hours, i.e.  λ = 1/(1 000)  
of the component's bounds are very tight (see Figure 9). After time t = 250 hours lower and upper bounds 
are almost identical.

CONCLUSION
Firstly, we reviewed standard approaches to modeling the reliability of complex systems – fault trees 
and Petri Nets. One-to-one relation between a fault tree and Petri Net of Liu and Chiou (1997) and their 
recursive top-down algorithm to find minimal cut sets and minimal paths sets were presented. 

The algorithm was illustrated on a simple model example of the three-masted vessel and a more complex 
“three-motor” system of Vesely et al. (1981). The bounds of the reliability functions were established. Trivial 
bounds fail in the real complex systems. The minimal sets bounds seems to be a good approximation.

The two examples showed, that the recursive top-down matrix algorithm by Liu and Chiou (1997)  
is computationally demanding. It seems that the transformation of the fault tree to Petri Net to find 
minimal cuts and minimal paths sets more efficiently is not effective.

In future work we focus on comparison, computational complexity assessment, and computational 
study of minimal cut/minimal path sets algorithms for both settings.
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